RADIETE COLLABORATION MEETING @TRIUMF

RESENT STATUS OF DEVELOPMENT FOR TUNGSTEN ALLOY, TFGR W-1.1%TIC, AS ADVANCED TARGET MATERIAL

HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION, INSTITUTE OF PARTICLE AND NUCLEAR STUDIES J-PARC CENTER, PARTICLE & NUCLEAR PHYSICS DIVISION

SHUNSUKE MAKIMURA

SHUNSUKE, MAKIMURA@KEK.JP

CONTENTS

- Private affair
- Development for TFGR W-TiC
 - Tungsten as target material
 - TFGR W-TiC
 - Pure W, its alloys, and TFGR W-TiC
 - Present status of TFGR W-TiC
- Discussion to improve creep behavior in TFGR W-TiC
- Summary

PRIVATE AFFAIR

On Ist Oct. 2019

- I moved from "KEK, IMSS, Materials and Life Science Facility, Muon Science section" to
- "KEK-Institute of Particle and Nuclear Studies, J-PARC-Particle and Nuclear Physics division"
- Construction of Muon Target is completed, "COMET target" next

Muon Target @MLF, J-PARC 3 GeV, I MW Graphite target

THIS PRESENTATION IS SUPPLIED BY

- KEK-IPNS, J-PARC-Particle and Nuclear Physics division
- COMET collaboration
- Metal Technology Co., LTD
- Sunric Co., LTD
- Ehime University, CERN, HIT- Tokyo University,,,

Supported by

- MTC-KEK collaboration
- Grant-In-Aid, JSPS KAKENHI 19H01913
- Grant-In-Aid, The Small and Medium Enterprise Agency, METI
- Joint Usage/Research Center PRIUS, Ehime University, Japan

DEVELOPMENTS FOR TFGR W-TIC

TUNGSTEN AS TARGET MATERIAL

- Expected as the target material, due to high density and high melting point
- For use of <u>tungsten as muon production target</u>, the boundary between cooling material and vacuum in beamline disturb transportation of muon. Thermal radiation cooling is desired. <u>It should be used at high temperature</u>. (COMET, mu2e, MLFTS2,,,,)

The use of W as target material is limited by

"Recrystallization embrittlement" and "Irradiation embrittlement".

TFGRW-TiC

Toughened <u>Fine-Grained Recrystallized W-TiC</u>, (TFGR W-TiC) is developed by Prof. Kurishita at Tohoku University. Now the activities are transferred to KEK and Metal Technology Co. LTD collaboration.

- Equiaxed, fine grains with TiC precipitates
- **GB** reinforced by TiC enrichment
- □ No recrystallization embrittlement
- □ High sink density: Resistance to irradiation is anticipated.
- **D** DBTT (nil-ductility tem.) < RT

Mater. Trans. 54 (2013) 456-465.

Since 2016

PURE W, ITS ALLOYS, AND TFGR W-TIC

Pure W and Its alloy (Conventional)

Equiaxed, Fine grains (Radiation resistant) The GBs are semi-coherent and reinforced. No recrystallization embrittlement occur.

PURE W, ITS ALLOYS, AND TFGR W-TIC

Characterization item	Pure W	W-Re	W-Y ₂ O ₃ or K-doped	TFGR W-TiC			
How Strengthened	Hot rolling etc. & Grain size	Hot rolling etc. & Solution	Hot rolling etc. & Dispersion	Segregation & Dispersion (Precipitation)			
Recrystallization embrittlement							
Recrystallization embrittlement	Yes	Yes	Yes	No			
Expected usable maximum temp.	1200-1300 °C	1500 °C	1500 °C	1800 °C (in UHV) or higher *			
GB in the recrystallized state	Weak (not reinforced)	Slightly reinforced by Re	Very weak (not reinforced)	Reinforced by TiCx (Semi coherent)			
DBTT in the recrystallized state	Higher than RT	Around RT	Higher than RT	r than RT Around RT			
Irradiation embrittlement							
Grain appearance	Elongated, Coarse	Elongated, Coarse	Elongated, Coarse	Equiaxed, fine grains in recrystallized state			
Radiation damage	Vulnerable	Vulnerable	Vulnerable	Resistant (anticipated)			
* Creep behavior must	be considered, as discu	ssed later		9			

RECALL OF REPORT AT RADIATE CM, CERN, 2018

The development of TFGR was transferred to KEK-MTC collaboration.

•Restoration of TFGR was realized.

- Oxygen impurity should be decreased.
- MA process for 72 hours was not sufficient.

Future Prospect of TFGR W-TiC

Pursuit of higher performance

(nm) H. Kurishita et al. Phys. Scr. T159 (2014)014032. Developments for Mass production & Industrial use by Academic Industrial Collaboration

- Metal Technology Co., LTD
- Sunric Co., LTD.
- And several vendors as advisors

Objective

- Heater material in vapor deposition for manufacturing of semi-conductors
- Anode in lamp for lithography

Supported by the Small and Medium Enterprise Agency, METI

Investigation of radiation damage

- Irradiation damage (dpa), by HIT-Tokyo-U
- Next BLIP or other neutron-irradiation?
- Investigation of He, Re, Os embrittlement by ??

DISCUSSION TO IMPROVE CREEP BEHAVIOR IN TFGR W-TIC

FUNDAMENTAL OF CREEP BEHAVIOR

p, *d* are considered at 2^{nd} formula.

<u>Creep</u>: Permanent deformation under Constant stress and Constant temperature

Primary creep (Skip in this presentation)

- Sliding length of Dislocation
 - Pure tungsten: large
 - With solution or dispersion: small

n : stress exponent					
d : grain size, p : exponent of inverse grain size					
Q: activation energy for creep	μ : rigidity				
σ: stress	arOmega : atomic volume				
E:Young's modulus	b : Burgers vector				
T:Absolute temperature	D: diffusion coefficient				
k: Boltzmann constant					

RELATIONSHIP BETWEEN STRUCTURES AND CREEP MECHANISM

Structure	Steady state (Secondary) creep rate					
its alloys	Creep mechanism	Controlling mechanism	Stress exponent, <i>N</i>	Diffusion	Q	р
Dune W	Dislocation	Recovery of	~ 5	Lattice, D _L	Q_L	0
rure w	slip	stress (disl.)	~ 7	Pipe, D _p	Q_p	0
Solution hardened (W-Re)	Dislocation slip	Solute atmosphere dragging	3~4	Mutual, <i>D_m</i>	Q _m	0
Dispersion hardened (W-Y ₂ O ₃)	Dislocation slip	Recovery of inter. stress (particle)	> 6	Lattice, D _L	Q_L	0
TFGR W-	Dislocation slip	Recovery of inter. stress (precipitate)	> 6	Lattice, D _L	Q _m	0
1.111C (Toughened, fine grained	Grain	Lattice diffusion	2	Lattice, D _L	Q_L	2
recrystallized)	rystallized) sliding	GB diffusion	2 (1)	GB, D _{gb}	Q_{gb}	3

<u>Secondary creep</u> $\varepsilon_s \propto (\sigma/E)^n \exp(-Q/kT)$ $\varepsilon_s = \varepsilon_0 (\mu Q/kT) (\sigma/\mu)^n (b/d)^p (D/b^2)$

n : stress exponent
Q : activation energy for creep
d : grain size
p : exponent of inverse grain size

When the grain size is fine, theeffect of grain boundary sliding must be taken into account.

AIMING AT SIGNIFICANT ENHANCEMENT OF CREEP RESISTANCE IN TFGR W-TIC

Features of current TFGR W-TiC

- Significantly reinforced GBs by segregation (enrichment) and precipitation of TiCx at random GBs in the recrystallized state
- High density of sink sites for irradiation induced point defects
- Precipitation hardening
- Equiaxed fine grains (GS : 1.5 ~ 2 μ m)
- Need + solution hardening
 - + adequate increase in grain size

Example of fine grained, solution and precipitation hardened V alloy

Creep resistance: Solution hardened: V-4Cr-4Ti << Solution & precipitation hardened: V-1.4Y-7W-9Mo-0.7TiC

Effects of grain size on the entire creep curve at 1073K and 250MPa for V-1.4Y-7W-9Mo-0.7TiC together with (e) V-4Cr-4Ti with grain size of 17.8 μm (Nifs heat 2).

Slight increase in grain size significantly enhances creep resistance of fine grained, solution and precipitation hardened V alloy

Relationship between steady state creep rate, $\dot{\varepsilon}_s$, creep mechanism and grain size in two V alloys

solution and dispersion hardened V–1.4Y–7W–9Mo–0.7TiC with different grain sizes and coarse-grained, solution hardened V–4Cr–4Ti alloy

SUMMARY

- The use of W as target material is limited by "Recrystallization embrittlement" and "Irradiation embrittlement".
- •Now the activities of TFGR W-TiC are transferred to KEK and Metal Technology Co. LTD collaboration.
- Developments are in progress under collaboration with academic and industries.
- •The creep resistance of TFGR W-TiC can be improved by addition of another element and control of grain size.

Thanks for your attention and,,,

8th High Power Targetry Workshop

May 25-29, 2020 Venue : RIKEN Wako campus

Themes for the workshop include :

- 1. R&D to support concepts
- 2. Radiation damage in target material and related simulations
- 3. Post-irradiation examination
- 4. Target design, analysis and validation of concepts
- 5. Target facility challenges
- 6. Construction, fabrication, inspection, guality assurance
- 7. Operation of targets and beam dumps
- 8. Multipurpose use of targets and beam dumps

http://indico2.riken.jp/event/3102/

hptw2020-loc@ml.j-parc.jp