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Introduction/Caveats

 We are building a new cyclotron radiation
spectroscopy (CRES) experiment

« The CRES technique was developed by the
Project8 collab. for neutrino masses in 3H

e Our setup will work for 6He, 1°Ne sources at
CENPA

* I'm an experimentalist; won’t go into
fundamental physics/ EFT energy scales

| don’t know the future




New Physics Potential in "He Decay

2 | | I |
. I(_HC c)urrently searching for exotic °‘He Ab<107°
BSM) chirality-flipping interactions
in weak sector ] - (Proposed) -
_|tHC
* High-precision beta-decay ? (presenT)
measurements are potentially ‘C_) N
competitive ": 0
W
* °He is primarily sensitive to BSM LHC
tensor interactions -1 - (future) Beta decays /' _
(present)
* We believe the CRES technique can
constrain b to within 10™ 5
_ : j :
-2 O 2 4
£s (107)

See also: M. Gonzalez-Alonso, O. Naviliat-Cuncic, and N.
Severijns, Prog. in Part. and Nuc. Phys. 104, 165 (2019)




Overview of the CRES Technique

2) Fourier transform

1) Record a wave for 30 us.
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* Magnetic trapping efficiency is
energy independent

| “Never measure anything but frequency!”



CRES Signal Attributes
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* The pitch angle is between the momentum and
B_ at the bottom of the trap




Outline of CRES Measurement
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CRES Wavequide Apparatus




He6 CRES Signals and Trapping
Efficiency

Smallest orbit 2 tesla
Largest orbit at 2 tesla \

* Cyclotron radius is energy-
dependent

Orbits with centroids
in this area yield
collisions with walls

* Electrons hitting the guide walls
are instantly lost

guide inside

walls * |f the guide radius is not well
Orbits centers in

ils arex ate known, the distribution of
allowed. trapped electrons will deviate
from expectations

* Trapping helium ions in the guide
center would remove this
uncertainty




He6 CRES Signal Power and
Detection Efficiency

Distribution of simulated power in a Mode fields for
1.16 cm diameter cylindrical guide (B=2T) cylindrical guide

500, Ww 24 GHz, N = 18317
e 18 GHz, N =11996




Heb CRES Noise Power

T2 Tg Noise power/temp is highly
Tcascade — Tl = T T .. dependent on temperature of
Gl Gl X G2 first-stage amplifiers
Parameter Value
Cryogenic first stage gain 32.0 dB
Second stage gain 52.4 dB
Estimated Source Power 1 fW =-120.0 dBm
Receiver Noise Temperature 39.1K
Thermal Noise Power Density -182.7 dBm/Hz
ADC Input Noise Power to 250 kHz FFT Channel -45.4 dBm
ADC Input Signhal Power -35.6 dBm
SNR for Thermal Noise 9.6 dB

SNR for DAQ Quantization Noise (LSB =2 mV) 14.6 dB




Heb CRES Noise Power

Noise floor comparison to -108.5dBm input tone
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Data Acquisition (DAQ) System

* Based on ROACH2 system
created by CASPER radio
astronomy collaboration

* 2 x High-speed (5Gs/sec)
analog-digital converters
* 8-bit samples
* 500 mV input range
* =>-50 dBm quant. Noise

* Vertex-6 FPGA capable of
10 GB/sec throughput

* Qutput power spectrum in
48 us, write to disk at ~250
MB/sec
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Image credit: CASPER collaboration
www.casper.berkeley.edu



Doppler Effect in CRES Signals
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Doppler Effect: Signal Convolution

* Multiplying signals before FFTing introduces components at sum and diff frequencies

1
cos(we+Aw) cos(w,—Aw) = i[cos(ch)Jrcos(QAw)]
* Gets rid of sidebands

* Works across all carrier frequencies

* Not clear if the signal power cut is affordable




Future Directions

* Low-energy atomic exchange effects

* Reactor neutrino anomaly
w
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Conclusions

°He is a useful system to look for BSM physics/tensor couplings in the weak sector

Magnetic trapping + frequency based detection used in CRES technique offers
unprecedented precision in individual event energy reconstruction

We have developed a receiver chain + DAQ system capable of taking RF signals at -
120 dBm from 18-20 GHz and computing 2GHz FFT in real-time

Taking data in the frequency domain helps maximize bandwidth without
introducing data rate problems

Averaging frequency-domain data helps improve SNR

Doppler shift of particle in harmonic potential is a substantial problem; can be
overcome at the cost of reduced SNR
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