

Developing New Directions in Fundamental Physics (DND) 2020

Session: New Technologies and Techniques

Superconducting Quantum Sensors and Tests of Quantum Mechanics

Weijian Chen

Murch group, Department of Physics

Washington University in St. Louis

Outline

> Quantum limited amplification

- Josephson parametric amplifier
- Squeezing generation
- Dark matter axion search
- Superconducting qubit sensor
 - Dispersive measurement
 - Photon/magnon detector
 - Noise mitigation and spectroscopy
- Non-Hermitian quantum mechanics
 - Exceptional points
 - Exceptional-point sensor
 - 11/5/2020 Non-Hermitian superconducting qubit

Parametric amplification

Washington University in St. Louis

^{11/5/2020} Krantz, et al. Appl. Phys. Rev. 6, 021318 (2019).

Magnetic resonance with squeezed microwaves

4

Magnetic resonance with squeezed microwaves

Magnetic Field B_0 (T)

Bienfait, et al. Phys. Rev. X 7, 041011 (2017).

Washington

University in St.Louis

Accelerate dark matter axion search

^{11/5/2020} Graham *et al., Annu. Rev. Nucl. Part. Sci.* **65**, 485-514 (2015).

Zheng *et al.,* arXiv:1607.02529 Malnou *et al., Phys. Rev. X* **9**, 021023 (2019). ⁶

Outline

Washington University in St. Louis

> Quantum limited amplification

- Josephson parametric amplifier
- Squeezing generation
- Dark matter axion search

Superconducting qubit sensor

- Dispersive measurement
- Photon/magnon detector
- Noise mitigation and spectroscopy
- > Non-Hermitian quantum mechanics
 - Exceptional points
 - Exceptional-point sensor
 - 11/5/2020 Non-Hermitian superconducting qubit

Dispersive measurement

$$H = \hbar\omega_c \left(a^{\dagger}a + \frac{1}{2}\right) + \frac{\hbar\omega_q}{2}\sigma_z + \hbar\chi \left(a^{\dagger}a + \frac{1}{2}\right)\sigma_z = \hbar(\omega_c + \chi\sigma_z)\left(a^{\dagger}a + \frac{1}{2}\right) + \frac{\hbar\omega_q}{2}\sigma_z$$

Krantz, et al., Appl. Phys. Rev. 6, 021318 (2019). 8

11/5/2020

Resolving photon number states

Coherent $|n=0\rangle$ 2 Reduction of transmitted amplitude (%) 12 b Thermal 6.95 6.85 6.75 Spectroscopy frequency, v_s (GHz)

Schuster *et al., Nature* **445**, 515-518 (2007). 9

11/5/2020

Detection of an itinerant photon

Average photon number $|\alpha_{in}|^2$

Detection of single magnon

11/5/2020

Lachance-Quirion *et al., Sci. Adv.* **3**:e1603150 (2017); Lachance-Quirion *et al., Science* **367**, 425-428 (2020).

Noise mitigation and spectroscopy

Outline

> Quantum limited amplification

- Josephson parametric amplifier
- Squeezing generation
- Dark matter axion search
- Superconducting qubit sensor
 - Dispersive measurement
 - Photon/magnon detector
 - Noise mitigation and spectroscopy
- Non-Hermitian quantum mechanics
 - Exceptional points
 - Exceptional-point sensor
 - 11/5/2020 Non-Hermitian superconducting qubit

Non-Hermitian physics and exceptional points

Exceptional point (EP): both the eigenvalues and the eigenstates are degenerate

Exceptional-point sensor

Degeneracy

Exceptional-point sensor

Exceptional points in superconducting qubits

11/5/2020 Naghiloo *et al., Nat. Phys.* **15**, 1232-1236 (2019)

Exceptional points in superconducting qubits

11/5/2020 Naghiloo *et al., Nat. Phys.* **15**, 1232-1236 (2019)

Summary

- Quantum limited amplification
- Superconducting qubit sensor
- Non-Hermitian quantum mechanics

Murch Group

Exceptional points in superconducting circuits

Washington University in St. Louis

Ring-down measurement of R1

