

European Research Council

<u>Novel methods</u> to link RIB and AMO techniques for future BSM physics studies

Stephan Malbrunot-Ettenauer

CERN research physicist

Searches for BSM physics

Searches for BSM physics

Radioactive molecules & EDMs

physics		Science
stable	Time	T _{1/2} : ms - s - min - days
'∞'	Intensity	yields: 1/s to '>10 ⁹ /s'
'whatever it takes'	Purity	(isobaric) contamination: 1:0-10 ⁶ or more
μK - mK - K cold beams or tapped	Temperature	ISOL target ≈2000 °C transport beam: 10s of ke
	Accelerator Environment	RIB availability/schedule EM noise

devices

atomic physics techniques at RIB facilities

high precision and accuracy

K. Blaum, et al., Phys. Scr. T152, 014017 (2013) P. Campbell et al., Prog. Part. and Nucl. Phys. 86, 127-180 (2016) J. Dilling et al., Annu. Rev. Nucl. Part. Sci. 68, 45 (2018)

accurate, but not precise

ion traps

- masses
- RIB preparations
- mass separation
- in-trap decay

laser spectroscopy

- hyperfine structure
- isotope shifts
- optical pumping

atom traps

- in-trap decay
- laser spectroscopy
- APV

atomic physics techniques at RIB facilities

Collinear Laser Spectroscopy (CLS)

Collinear Laser Spectroscopy (CLS)

laser spectroscopy

Collinear Laser Spectroscopy (CLS)

the Multi Ion Reflection Apparatus for Collinear Laser Spectroscopy

<u>trap</u> \Rightarrow long observation time \Rightarrow higher sensitivity

proof-of-principle experiment

laser spectroscopy

MIRACLS performance

S. Sels et al., Nucl. Instr. Meth. B 463, 310 (2020) F. Maier et al., Hyperfine Interact. 240, 54 (2019) S. Lechner et al., Hyperfine Interact 240, 95 (2019) V. Lagaki et al., Acta Phys. Pol. B 51, 571 (2020) V. Lagaki et al., in preparation

S. Sels et al., in preparation

MIRACLS performance

MIRACLS performance

online measurements with O(10) ions/sec possible

MIRACLS for non-closed level systems

MIRACLS for non-closed level systems

Collinear Resonance Ionization Spectroscopy

First spectroscopy of radioactive molecules

laser spectroscopy of molecules

- cooling of internal degrees of freedom (especially vibrations)
 - ➡ higher population of the low-lying states
 - \Rightarrow simpler spectra \Rightarrow more easily identification
- buffer-gas cooling in cryogenic Paul trap:
 - \Rightarrow overall the gain could be more than x100 in scanning time.
 - ➡ enables efficient initial state preparation for later EDM searches

laser spectroscopy of molecules

- cooling of internal degrees of freedom (especially vibrations)
 - ➡ higher population of the low-lying states
 - \Rightarrow simpler spectra \Rightarrow more easily identification
- buffer-gas cooling in cryogenic Paul trap:
 - \Rightarrow overall the gain could be more than x100 in scanning time.
 - ➡ enables efficient initial state preparation for later EDM searches

cooling

cryogenic, buffer-gas filled Paul

Cryogenic cell for neutral beams

- charge exchange of cryo-cooled ion beam: re-heating?
- cryogenic buffer gas beam cell :
 - ➡ universal tool to obtain cold, slow, high-flux beams

N. R. Hutzler et al., Chem. Rev. 112, 4803 (2012) S. Truppe et al., J. of Modern Optics, 65, 648 (2018)

how to use it for radioactives?

Cryogenic cell for neutral beams

- charge exchange of cryo-cooled ion beam: re-heating?
- cryogenic buffer gas beam cell :
 - ➡ universal tool to obtain cold, slow, high-flux beams

N. R. Hutzler et al., Chem. Rev. 112, 4803 (2012) S. Truppe et al., J. of Modern Optics, 65, 648 (2018)

how to use it for radioactives?

cooling

Cryogenic cell for neutral beams

Hot Molecules

1001

- charge exchange of cryo-cooled ion beam: re-heating?
- cryogenic buffer gas beam cell :
 - universal tool to obtain cold, slow, high-flux beams

cooling

formation of radioactive molecules

S. Malbrunot-Ettenauer: DND 2020

courtesy of Chris R.J. Charles

199192

formation of radioactive molecules

S. Malbrunot-Ettenauer: DND 2020

formation of radioactive molecules

MR-ToF devices

MR-ToF devices

22

199192

MR-ToF devices

new opportunities for purified RIB

faster isobaric separation in MR-ToF while keeping high mass resolving power

- higher ion flux through MR-ToF device ('bypass' space-charge limits)
- MIRACLS: excellent synergy to development of MR-ToF with high-ion capacity
- ➡ initial goal: a few pA (ultimate goal: >100 pA)

Summary & Conclusions

- AMO studies: high-precision searches for new physics
- Radioactive beams & Radioactive Molecules
 - ➡ intriguing new opportunities for BSM physics
 - truly interdisciplinary
 - ➡ experimental challenges: link RIB and AMO technology

new developments

➡ laser spectroscopy methods

- ➡ cooling methods
 - cryogenic Paul trap
 - integration of cryogenic buffer gas cell in RIB environment
 - laser cooling
- ➡ molecule formation
- mass separation and identification

➡

S. Malbrunot-Ettenauer: DND 2020

S. Malbrunot-Ettenauer: DND 2020 <u>https://miracls.web.cern.ch</u>

