New techniques in precision measurements on simple atoms (and molecules)

Developing New Directions in fundamental Physics 2020 Nov 5, 2020

Makoto Fujiwara, TRIUMF

"To understand hydrogen is to understand all of physics"

Victor Weisskopf

Dan Klepper

- Hydrogen
 - "Much of what we know about the Universe comes from looking at hydrogen"
 - 75% of known Universe
 - One of the most precisely
 measured physical systems

- Exotic hydrogen (TRIUMF/CENPA)
 - Muonium
 - Muonic Hydrogen
 - Hadronic Hydrogen
 - Antihydrogen
 - Positronium

Tests of QED, Quantum Field Theory, General Relativity Fundamental Symmetries (CPT, Equiv. Principle etc) "Are we asking the right question?" arXiv:1309.7468

If we can improve the precisions of simple systems, we should!

 Hydrogen-antihydrogen symmetry test with ALPHA@CERN likely limited by hydrogen precision in near future

 HAICU@Canada (UBC, SFU, TRIUMF, Calgary, York): Developing novel "quantum sensing" techniques to push both antihydrogen AND hydrogen measurements

Take home message

• These new techniques could be used for new types of exciting measurements at TRIUMF!

- This talk:
 - Introduction/motivation
 - ALPHA antihydrogen experiment
 - HAICU: proposed R&D platform
 - Future opportunities

15 Years of ALPHA

Antihydrogen Spectroscopy with ALPHA at CERN

Laser cooling of antihydrogen: a major breakthrough!

Laser cooling of atoms, ions revolutionized atomic physics in last 40 years

Laser at 121 nm (VUV) Extremely challenging!

UBC laser (Momose)

Olin (TRIUMF)

A game changer! Culmination of efforts in the past decade!

Objective: to make precision hydrogen—antihydrogen comparison *in the same apparatus* → Need to improve both anti-H and H techniques!

HAICU: Hydrogen-Antihydrogen Infrastructure at Canadian Universities

- R&D platform for development for "quantum sensing" techniques for anti-H
- Use H (and other cold atoms) as proxy
 - (Anti)atomic fountain
 - (Anti)Matter-wave interferometer
 - Ramsey hyperfine spectroscopy
 - Optical traping
 - Anti-molecular clock
- Hydrogen difficult to handle
 - 1s-2p transition at 121 nm
 - Difficult to trap
 - No fountain made with H

(Anti)atom Interferometer Simulation

Techniques needed for anti-H
 could be useful to improve H
 measurements

HAICU concept

Key Concept [paper in preparation]

- <u>Magnetic compression</u> of atomic clouds in a small, high density quadrupole trap (~mm radius)
 - Dynamically transferred from Octupole; now feasible due to laser cooling
 - Magnets are challenging!
- Laser cooling → high phase space density (~100 um radius, 2 mm length)
 - Allow densities 10⁷ 10⁸ cm⁻³ (currently ~ 1 cm⁻³ in ALPHA)
 - This is a basis for antihydrogen molecular clock development [Myers PRA2018; Zammit et al PRA2019]

Expansion cooling

- \rightarrow Can create a (anti)H gas in micro-Kelvin regime!
- Precision spectroscopy
- Launch into free space as fountain for informetric and other interrogations (~100 nK regime)

Up to $10^7 - 10^8$ colder and/or denser anti-H cloud!

- Hydrogen spectroscopy with H in <μK regime
 - Note the current best H measurement uses 6 K atomic beam
 - Dominant errors
 - 2nd order Doppler broadening
 - Transit-time broadening

• Lamb-Dicke spectroscopy in harmonic trap

Cesar PRL 77, 255 (1996)

Cesar PRA 59, 4564 (1999)

- Fine structure const. via H fountain & interferometer
 - Larger recoils "signal" than Cs
 - QED test with g-2(Christian Panda)
- Optical trapping of H
- Muonium physics
- Positronium physics
 ~4 σ discrepancy with QED
- Colder tritium atoms for Project-8 (Elise Novitski)

- Dark photon with para-H₂
 - J. Bramante et al, PRD 101, 0550540 (2020)
- Molecular fountain
- Radioactive molecules
- Our cooling scheme may be useful for other systems

- VUV lasers
- Superconducting magnetic trap
- Cryogenics
- Magnetic deceleration beamline
- Magnetometry

- Detection of H
 - Anti-H is easy to detect!
- VUV photon detection
 - SiPM at low temperatures
 - Synergies with Dark Matter/Neutrino expt's

nEXO SiPM "wall"

Requires national lab infrastructure!

Bose-Einstein condensates on Int'l Space Station *Nature* June 11, 2020

Antimatter experiments in space? (micro-gravity environment)

BEC created on Earth: 1995 BEC created in space: 2020 (25 years later)

Trapped anti-H on Earth: 2010 Trapped anti-H in space: 2035???

- New techniques for studies of anti-H & H atoms (molecules) proposed
 - 10⁶ 10⁸ times colder and/or denser than existing expt's
 - Fountain, interferometer,
 Optical trapping, Ramsey
 spectroscopy, molecular ion
 clocks...
- CFI proposal under review

- Next few years
 - Will focus on ALPHA related R&D
 - Beyond ~2025
 - Opportunities for H, Mu,
 Ps, Radioactive molecules etc.

Aiming at ambitious goals!

O snail Climb Mount Fuji But slowly, slowly! — Issa Kobayashi

Result to be announced any day!

Stay tuned for the next DND!

