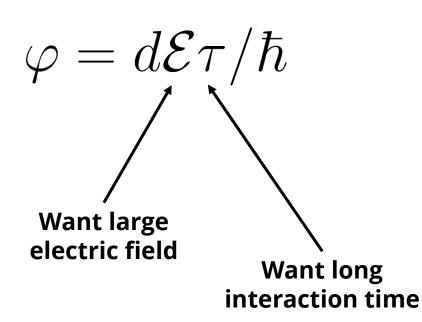


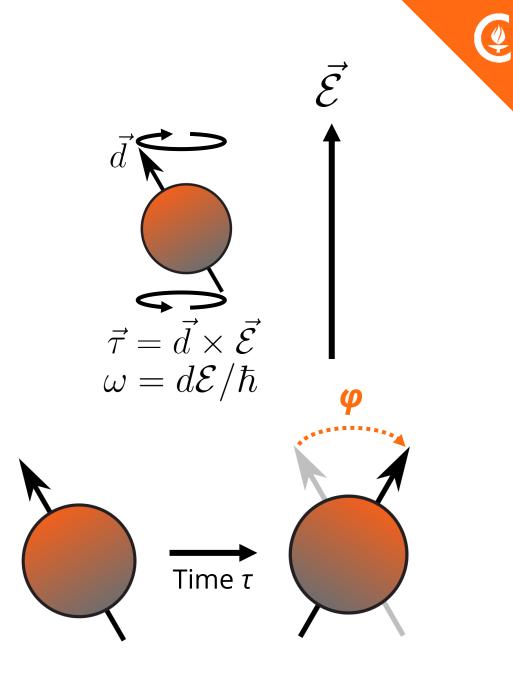
Experimental Perspectives on Fundamental Physics with Molecules

Nick Hutzler *Caltech*

Outline

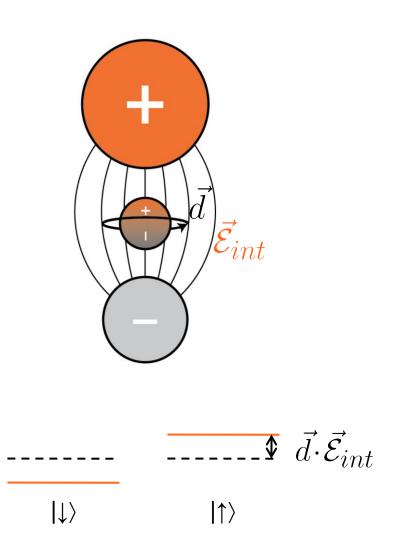
Electron EDM experiments with molecules

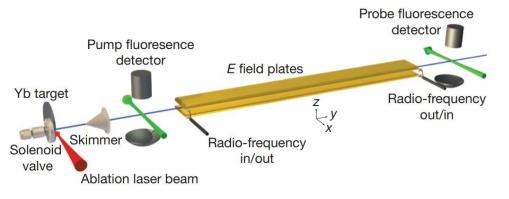

- Prototypical example of modern, rapidly-evolving experiments with molecules
- ~100x improvement on limit in past ~10 years
- Next-generation tools
 - Molecules offer orders-of-magnitude improvements in multiple sectors through multiple avenues



EDM Experiments with Molecules

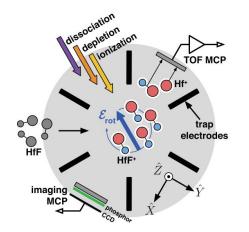
Measuring EDMs


- An EDM experiences a torque in an electric field
- Experiment:
 - Initialize, precess, measure, repeat...

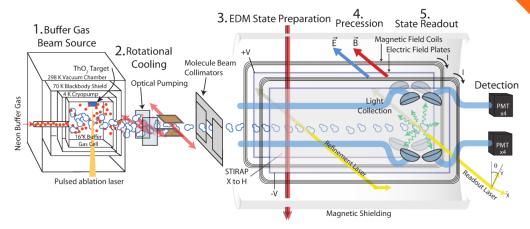


Electric field?

- Atoms/molecules have extremely large fields
 - 10-100 GV/cm for heavy species
 - Maximum lab field ~100 kV/cm
- Permanent EDM causes symmetry-violating energy shifts
- Molecular polarizability enhances sensitivity by ~1,000 vs. atoms
 - Atoms set best limits until 2011 – molecules are complicated!
 - Atoms still best in many areas... but watch your back!



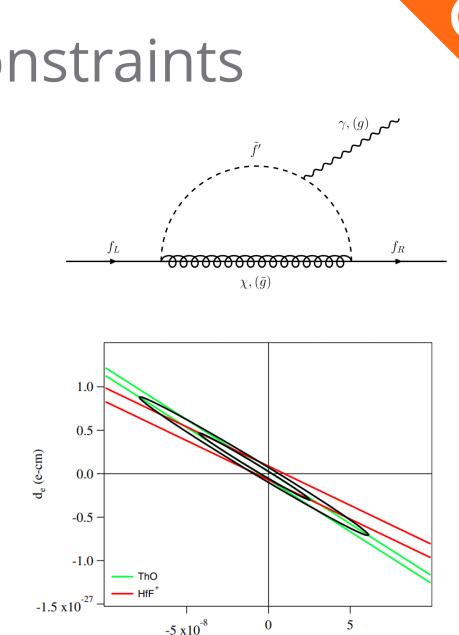
Atom smashers


YbF, Imperial

- Spin precession in pulsed supersonic beam
- First to beat atomic experiments
- |d_e| < 1.1 × 10⁻²⁷ e cm (2011)

HfF⁺, JILA/Boulder

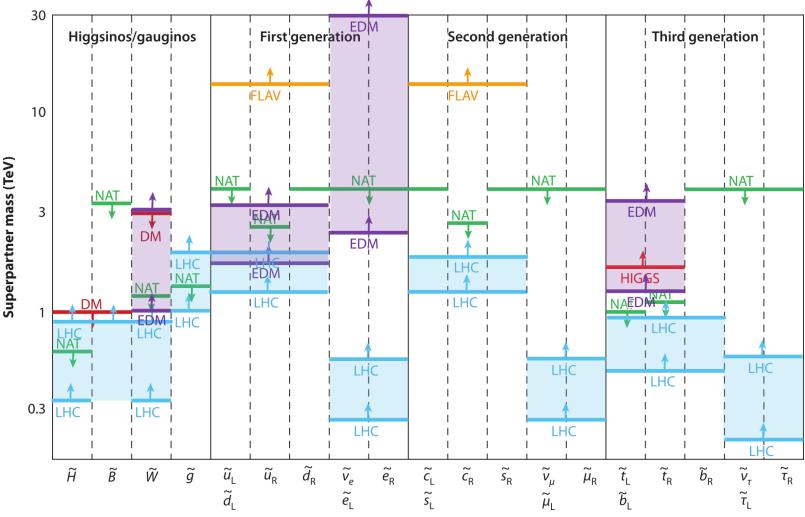
- Spin precession in ion trap
- Long coherence time from trapping
- $|d_e| < 1.3 \times 10^{-28}$ e cm (2017)



ACME, ThO, Harvard/Yale/Northwestern

- Spin precession in cryogenic beam
- Current most sensitive limit
- |d_e| < 8.7 × 10⁻²⁹ e cm (2014)
- |d_e| < 1.1 × 10⁻²⁹ e cm (2018)
 - 100x in 10 years
 - Each experiment is being upgraded
 - More are under way
 - Atom technology is also advancing!

Interpreting EDM Constraints


- SM background free
- Generic constraint
 - New particle mass M
 - CPV coupling φ~1
 - $M \gtrsim 30 \text{ TeV}$
 - ~3 TeV for 2 loops
- Much higher (>PeV) for specific models
- Multiple sources of CPV
 - Multiple experiments are needed to disentangle
 - Especially true for hadronic CPV searches

Cs

J. Engel, M. J. Ramsey-Musolf, and U. van Kolck, Prog. Part. Nucl. Phys. 71, 21 (2013) T. E. Chupp, P. Fierlinger, M. J. Ramsey-Musolf, and J. T. Singh, Rev. Mod. Phys. 91, 015001 (2019)

Many complementary approaches

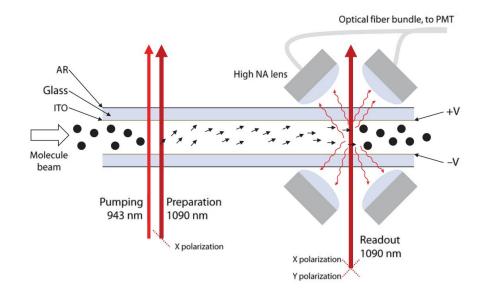
Shading shows progress since 2013 (LHC, ACME, nEDM, ¹⁹⁹Hg)

"All of the constraints shown are merely indicative and are subject to significant loopholes and caveats." –J. Feng

Adapted and updated from J. Feng, Ann. Rev. Nuc. Part. Sci. 63, 351 (2013) with help from D. DeMille

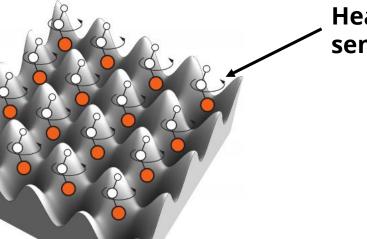
Next-generation tools

Sensitivity

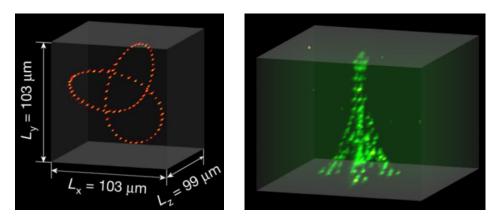

- Sensitivity to new physics scales as [Intrinsic sensitivity] × [Coherence time] × [Count rate]^{1/2}
- Molecular experiments can combine significant enhancements in all of these areas
 - Orders-of-magnitude improvement for wide range of BSM
 - Leptonic/hadronic CPV, dark matter, parity violation, new forces, weakly-coupled sectors, ...
- Highly symbiotic with quantum information science (QIS)
 - Same requirement: Coherent quantum control
 - Huge and active field (that I won't talk about)
- We will frame our discussion largely around EDMs, but the experimental advances will have broad applicability
- Our focus: new approaches and new systems

Laser cooling

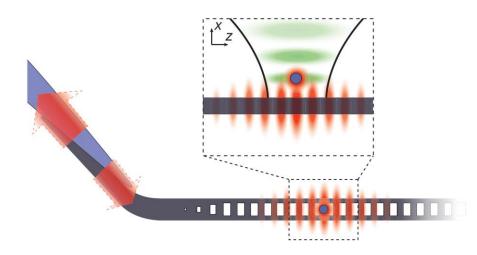
Motivation for laser cooling


- Beam experiments (ThO, YbF) limited by time of flight, τ ~ few ms
- Can extend by slowing and compressing beam
- Trapping can yield orders of magnitude improvement
 - Critical for long coherence time of HfF⁺, Ra experiments
- For neutral species, requires ultra-cold temperatures <1 mK
 - Suitable conservative traps are shallow
 - Free molecules (fountains) must be very slow
- \rightarrow Laser cooling

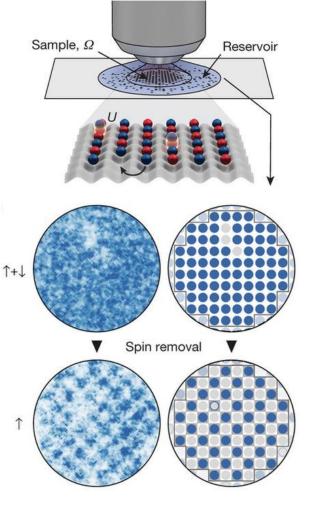
Ultracold CPV Searches


- 10⁶ molecules
- 10 s coherence
- Large enhancement(s)
- Robust error rejection
- 1 week averaging

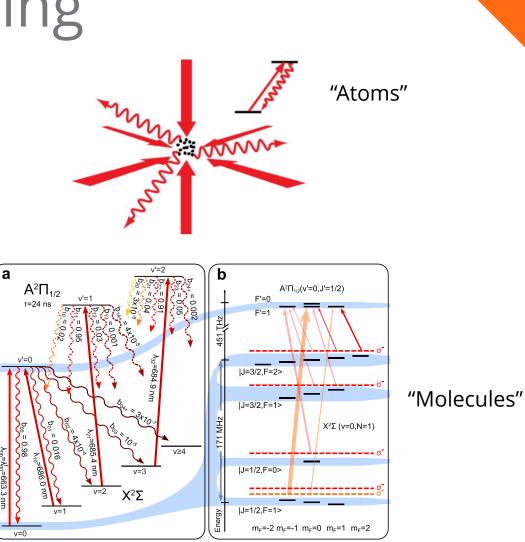
M_{new phys} ~ 1,000 TeV



Heavy, polar molecule sensitive to new physics

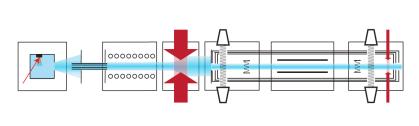

Quantum Control with Atoms

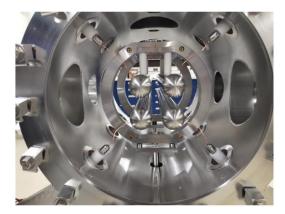
D. Barredo et al., Nature 561, 79-82 (2018)


T. G. Tiecke, *et al.*, Nature **508**, 241 (2014).

A. Mazurenko et al., Nature 545, 462-466 (2017)

Laser cooling/trapping


- Lasers can be used to cool atomic gases to < µK</p>
 - Major driver of AMO, QIS
 - ~10⁵ cycles of absorption, spontaneous decay
- Some molecules can be directly laser cooled
 - Complexity \rightarrow challenging
 - SrF, CaF, YO, YbF, BaF, ...
 - Polyatomics (later)
- Can assemble molecules from ultracold atoms
 - Rb, Cs, Ba, Ra, Yb, Hg, ...
 - KRb, RbCs, NaCs, NaRb, ...
- Many recent, rapid advances!



First molecule MOT: SrF, DeMille Group J. F. Barry et al, Nature 512, 286 (2014)

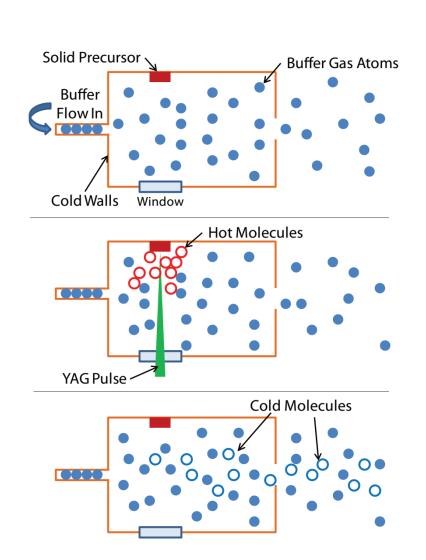
Three Examples

YbF

- eEDM @ Imperial College London
- Laser cooling demonstrated
- N. J. Fitch et al., 2009.00346 (2020)

BaF

- NL-eEDM Collaboration
- Advanced deceleration techniques
- P. Aggarwal et al., Eur. Phys. J. D 72, 197 (2018).


TIF

- CeNTREX Collaboration
- TI Schiff moment (~proton edm)
- O. Grasdijk et al., 2010.01451 (2020)

Several more laser cooling examples later

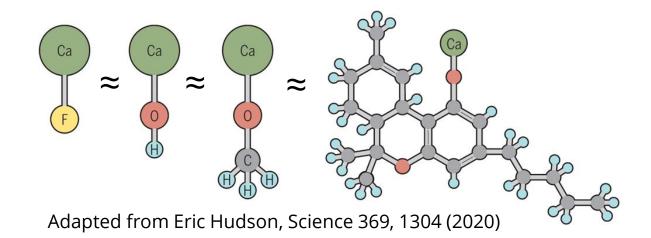
Buffer gas cooling

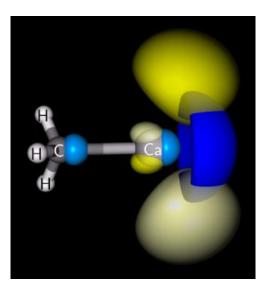
- These molecules are free radicals with low vapor pressure – challenging
- Use inert gas in cryogenic environment to cool via collisions
 - CBGB Cryogenic buffer gas beam
- "Works for anything"
- Cold, slow, high flux
- Critical for ACME, all neutral molecule laser cooling/trapping

NRH, H. Lu, and J. M. Doyle, Chem. Rev. 112, 4803 (2012)

Laser-coolable species

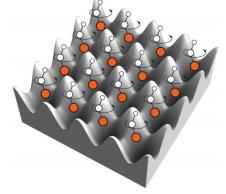
Hydr		 Either directly, or in a molecule Incomplete, and will continue to grow! 													4 Helium 2			
7 L Lith	ium	9 Beryllium 4											11 Boron 5	12 Carbon 6	14 N Nitrogen 7	16 Oxygen 8	19 Fluorine 9	20 Neon 10
2 N Sod	a	24 Mg Magnesium 12											27 Al Aluminium 13	28 Silicon 14	31 P Phosphorus 15	32 Sulphur 16	35.5 Chlorine 17	40 Argon 18
3 Potas	ssium	40 Calcium 20	45 Scandium 21	48 Ti Titanium 22	51 V Vanadium 23	52 Cr Chromium 24	55 Mn Manganese 25	56 Fe Iron 26	59 Cobalt 27	59 Ni ckel 28	63.5 Cu Copper 29	65.4 Zn ^{Zinc} 30	70 Gallium 31	73 Gee Germanium 32	75 As Arsenic 33	79 Selenium 34	80 Bromine 35	84 Krypton 36
Rubin 3	b	88 Sr Strontium 38	89 Yttrium 39	91 Zr ^{Zirconium} 40	93 Nbb Niobium 41	96 Mo Molybdenum 42	99 Tc Technetium 43	101 Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	112 Cd Cadmium 48	115 Indium 49	119 Sn ^{Tin} 50	122 Sb Antimony 51	128 Tellurium 52	127 Iodine 53	131 Xenon 54
13 Caes 5	Sium	137 Ba Barium 56	57-71	178 Hf Hafnium 72	181 Tantalum 73	184 W Tungsten 74	186 Re Rhenium 75	190 Osmium 76	192 Iridium 77	195 Pt Platinum 78	197 Au _{Gold} 79	201 Hg Mercury 80	204 Tl Thallium 81	207 Pb Lead 82	209 Bismuth 83	210 Polonium 84	210 Astatine 85	222 Rn Radon 86
22 Frank 8	r cium	226 Radium 88	89-103	267 Rf Rutherfordium 104	268 Db _{Dubnium} 105	269 Sg Seaborgium 106	270 Bh Bohrium 107	277 HS Hassium 108	278 Mt ^{Meitnerium} 109	281 DS Darmstadtium 110	Roentgenium	285 Cn Copernicium 112	286 Nh Nihonium 113	289 Fl Flerovium 114	290 Mc Moscovium 115	293 LV Livermorium 116	294 TS Tennessine 117	294 Og Oganesson 118

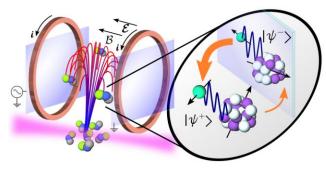

139 La Lanthanum 57	140 Cereum 58	141 Pr Praseodymium 59	144 Nd Neodymium 60	147 Pm Promethium 61	150 Samarium 62	152 Europium 63	157 Gadolinium 64	159 Tb Terbium 65	163 Dy Dysprosium 66	165 HO Holmium 67	167 Erbium 68	169 Tm Thulium 69	173 Yb Ytterbium 70	175 Lu ^{Lutetium} 71
227 Actinium 89	232 Th Thorium 90	231 Pa Protactinium 91	238 U Uranium 92	237 Np Neptunium 93	247 Putonium 94	243 Am Americium 95	Curium 96	247 Bk Berkelium 97	251 Californium 98	254 Es Einsteinium 99	253 Fm ^{Fermium} 100	256 Md Mendelevium 101	254 No Nobelium 102	257 Lr Lawrencium 103



Polyatomic Molecules

Polyatomic Molecules


- Additional degrees of freedom to engineer desirable properties
 - Electric and magnetic field interactions
 - High polarizability
 - Species in ligand
 - Frequencies of rotation and vibration
 - ••
- Other desirable properties are often preserved
 - (... with suitable ligand)
 - Laser cooling/photon cycling
 - Intrinsic sensitivity
 - Exotic nuclei
- Review: 2008.03398

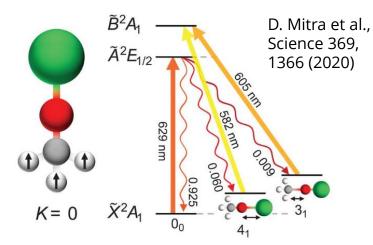

T. A. Isaev and R. Berger PRL **116**, 063006 (2016)

Three Examples

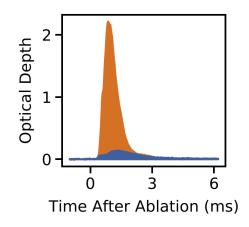
YbOH

- Combine laser cooling, high polarizability
- PolyEDM: NRH, Doyle, Steimle, Vutha,
- Visit *polyedm.com* to see what we are up to!
- I. Kozyryev and NRH, PRL 119, 133002 (2017)

- Engineer magnetic field interactions for PV
- Reduces B field, adds many systematic checks
- E. B. Norrgard, et al, Nat.
 Comm. Phys. 2, 77 (2019)

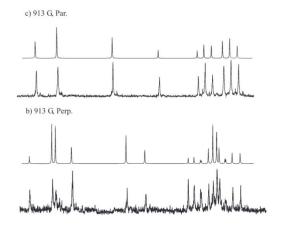

RaOCH₃⁺

Ra

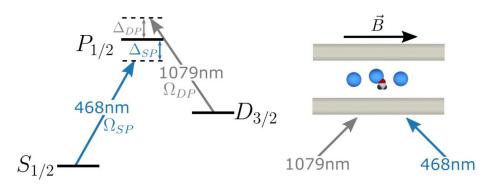

- Combines deformed nucleus with ion trap EDM approach (more later)
- Recently created in Jayich Lab @ UCSB
- M. Fan et al., 2007.11614 (2020)
 P. Yu and NRH, 2008.08803 (2020)

... Many, many more!

Selected Experimental Advances



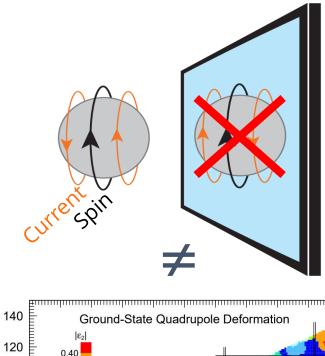
Laser cooling (Doyle @ Harvard) SrOH, CaOH, YbOH, CaOCH₃

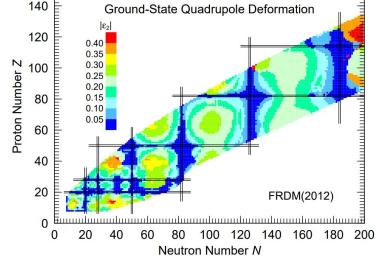

Production methods

A. Jadbabaie et al., New J. Phys. 22, 022002 (2020)

High resolution, broadband spectroscopy

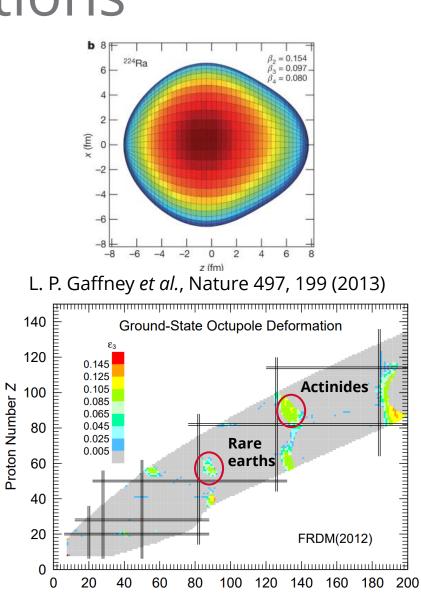
D. Nguyen T. C. Steimle et al., J. Mol. Spec. 347, 7 (2018)


Ion trapping, cooling, control Fan et al., 2007.11614 (2020)



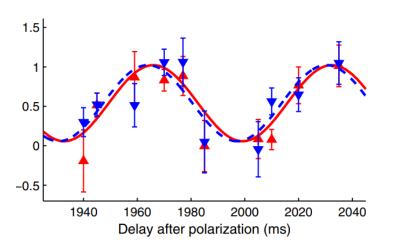
Deformed Nuclei

Hadronic CPV Enhancement

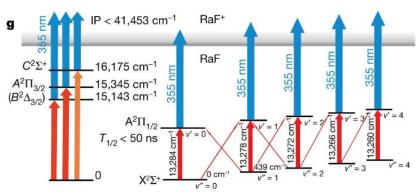

- Quadrupole (β₂) and octupole (β₃) deformations enhance hadronic CPV
 - θ_{QCD}, chromo-EDMs, nucleon
 EDMs, CPV forces, ...
 - Combines with molecular enhancements
- β₂: Magnetic quadrupole moments (MQMs)
 - Collective enhancement, typically ~10
 - Yb, Ta, Hf, Th, Ra, ...
 - V. V. Flambaum, et al., PRL 113, 103003 (2014)
 - Ex: ¹⁷³YbOH (my lab)

Octupole Deformations

- β₃: Schiff Moments (NSMs) enhanced by ~100-1,000
 - "Hard to come by"
 - Ra, Ac, Th, ...
 - Heavy, spinful, deformed species are short-lived
- Combines with molecular enhancements → 10⁵⁻⁶ sensitivity gain vs. atoms with spherical nuclei
 - Hg, Xe (highly advanced experiments, hard to beat)
 - Many CPV sources → need multiple experiments
- Truly exotic nuclei like ²²⁹Pa offer another factor of 100-1000 (maybe)



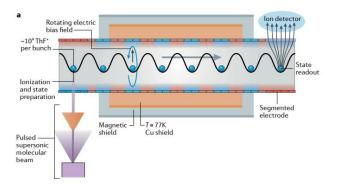
Neutron Number N


Radium

Ra is especially interesting!

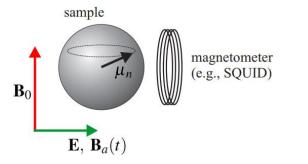
- Ra, Ra⁺, Ra molecules can be laser cooled
- Venue to combine laser cooling, polyatomics, ion trapping, deformed nuclei
- Ra Laser-cooled, trapped EDM experiment @ ANL
- RaF Laser-coolable [Isaev et al., PRA 82, 052521 (2010)] Recent high-resolution spectroscopy
- RaAg Assemble from laser-coolable atoms See work by Fleig and DeMille
- RaOCH₃⁺ Trapped, cooled/controlled with co-trapped Ra+ [Fan et al., 2007.11614 (2020)] Single ion could reach frontiers of hadronic CPV [Yu and NRH, 2008.08803 (2020)]
 - RaOH, Laser coolable, high polarizability
- RaOCH₃, T. A. Isaev, et al., J. Phys. B 50, 225101 (2017)
 - ... I. Kozyryev and NRH, PRL 119, 133002 (2017)

Ra EDM @ ANL R. H. Parker, et al., PRL 114, 233002 (2015)



High-resolution RaF spectroscopy R. F. Garcia Ruiz *et al.*, Nature 581, 396 (2020)

Other Directions


Other CPV Approaches

W. B. Cairncross and J. Ye, Nat. Rev. Phys. **1**, 510 (2019).

Next-gen ion trapping

- Combine long coherence time with large count rates
- Suitable for eEDM, NSM, MQM

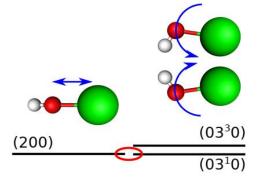
CASPEr: Budker et al., Phys. Rev. X 4 021030 (2014)

Oscillating EDMs

- Probe new axion (and axion-like) parameter space
- Use sensitive NMR techniques to search for oscillating CPV
- "Static" EDM experiments also provide sensitivity

Graham and Rajendran, PRD 84, 055013 (2011), Stadnik and Flambaum PRD 89, 043522 (2014), Stadnik et al., PRL 120 013202 (2018)

laser Ar: BaF 4 K substrate B-field coils


> EDM³ :A. C. Vutha et al., Atoms 6, 3 (2018)

Noble gas matrices

- Extreme count rates
- Suitable for molecules and atoms, including rare isotopes

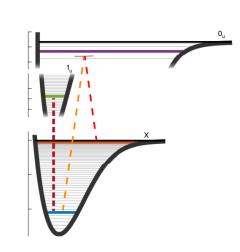
J. T. Singh, Hyperfine Interact. 240, 29 (2019).

New Fields and Forces

I Kozyryev, et al.,1805.08185 (2020)

Drifting constants

- Can arise due to new light fields
- Molecules especially sensitive to m_p/m_e
 - Rotation, vibration
- Enhanced at nearlydegenerate levels
 - Complexity is advantageous!


Flambaum and Kozlov, PRL 99 (2007), DeMille et al., PRL 100 043202 (2008150801), Kobayashi et al., Nat. Commun. 10, 3771 (2019).

Arvanitaki et al., PRX 8, 041001 (2018)

New fields

- New heavy fields can oscillate on laboratory timescales
- Resonant absorption, scattering, precession, mixing, ...
- Molecular levels highly tunable with fields

Stadnik and Flambaum, PRD 89, 043522 (2014), R. Essig et al., PRR 1, 033105 (2019), Flambaum et al. PRD, 101 073004 (2020)

S. S. Kondov et al., Nat. Phys. 15, 1118 (2019)

New forces

- New short-range forces will modify molecular binding
- Use precision molecular clocks to look for deviations from theory

Summary

Ŷ

Precision measurements with molecules have made tremendous advances in the last decade, and will lead to orders-of-magnitude improvements in many BSM searches in the not-too-distant future

WOULD YOU LIKE TO KNOW MORE?

Precision measurements in atoms/molecules

- M. S. Safronova et al., Rev. Mod. Phys. 90, 025008 (2018)
- N. R. Hutzler, Quantum Sci. Technol. 5, 044011 (2020)

EDMs

- T. E. Chupp, et al., Rev. Mod. Phys. 91, 015001 (2019)
- W. B. Cairncross and J. Ye, Nat. Rev. Phys. 1, 510 (2019)

Interpretation of EDM limits

- See list of references in Safronova, Chupp reviews
- J. Engel et al., Prog. Part. Nucl. Phys. 71, 21 (2013)

Laser cooling molecules

- M. R. Tarbutt, Contemp. Phys. 59, 356 (2018)
- D. McCarron, J. Phys. B At. Mol. Opt. Phys. 51, 212001 (2018)

Email me!

Collaborators

Caltech

GORDON AND BETTY

UNDATION

Hutzler Lab Summer 2020

HEISING-SIMONS NG

FOUNDATION

PolyEDM: John M. Doyle (Harvard), Tim Steimle (ASU), Amar Vutha (Toronto)

Theory: Anastasia Borschevsky (Groningen), Lan Cheng (JHU), Jacek Kłos (UMD), Svetlana Kotochigova (Temple)

Hypermetallics: Anastassia Alexandrova (UCLA), Wesley Campbell (UCLA), Justin Caram (UCLA) John M. Doyle (Harvard), Eric Hudson (UCLA), Anna Krylov (USC)

Come visit... some time!

www.hutzlerlab.com www.polyedm.com ALFRED P. SLOAN

