Probing the Dark Sector with Atoms and Nuclei

Surjeet Rajendran, **The Johns Hopkins University**

DND2020

Grand Challenge of High Energy Physics Standard Model experimentally established

We know there is new physics out there

Matter? Universe?

Dark Matter Where is tl

Hierarchy

Dark Energy

Where is this new physics?

Where is this New Physics? Mass? Strength?

10¹⁹ GeV (Quantum Gravity)

Dark Matter, Dark Energy, Inflation...

Neutrinos, Gravitational Waves

2. Missing Energy in Nuclear Decays

3. Conclusions

Outline

1. Dark Matter with Atom Interferometers and Clocks

Atoms and Dark Matter

The Dark Matter Landscape

bosonic

0-43 GeV	10-22 eV	10-15 eV	10-6 eV
	(yr-1)	(Hz)	(GHz)
			Fit

- Standard Model scale ~ 100 GeV
- One Possibility: Same scale for Dark Matter? Weakly Interacting Massive Particles (WIMPs) Soon to hit solar neutrino floor
- Other Generic Candidates: Axions, Massive Vector Bosons, Dark Blobs

in galaxy

How do we make progress?

Photons

$$\vec{E} = E_0 \cos\left(\omega t - \omega x\right)$$

Detect Photon by

measuring time varying

field

$$a(t) \sim$$

$$m_a^2 a$$

Bosonic Dark Matter

Dark Bosons

Early Universe: Misalignment Mechanism

Today: Random Field

 $\sim a_0 \cos\left(m_a t\right)$

Spatially uniform, oscillating field

$$_0^2 \sim \rho_{DM}$$

Correlation length ~ $I/(m_a v)$

Coherence Time ~ $I/(m_a v^2)$ ~ I s (MHz/m_a)

Detect effects of oscillating dark matter field

Resonance possible. Q ~ 10^{6} (set by v ~ 10^{-3})

Dark Matter

Oscillating Dark Matter Field (just like oscillating EM field from CMB)

Observable Effects

- What can the dark matter do?
- What can a classical field do?

Ultralight Dark Matter

Concept

Arrival at B: T+L, 2T +L, 3T+L...

- Protocol: Comparison of two quantum sensors
 - Two Kinds
 - **Clocks Across Baseline**

Null Result

Record **Arrival Times**

B

Concept

Null Result Zero differential acceleration

- Protocol: Comparison of two quantum sensors
 - Two Kinds
 - **Clocks Across Baseline**
 - Falling Accelerometers

Protocol: Clocks across a baseline

@ T, 2 T, 3T...

Null Result Arrival at B: T+L, 2T +L, 3T+L...

New Physics Arrival at B: T+L+ ϵ , 2T +L- ϵ , 3T+L+ ϵ ...

What can cause this change?

New Physics?

B

Record **Arrival Times**

New Physics?

Protocol: Clocks across a baseline

Dark Matter: Time variations in fundamental constants α, me

New Physics? Protocol: Falling Accelerometers

Null Result Zero differential acceleration

What can cause this change?

New Physics Differential acceleration

New Physics? Protocol: Falling Accelerometers

Force from Dark Matter, Earth, Transients (composite dark matter, strings, domain walls etc.)

MAGIS Projected Reach

Missing Energy in Nuclear Decays

Lifetime, Cascade Efficiency, Availability

Nuclei

Parity of States -> scalars and vectors

~ 30 radiation lengths

Plastics: ~ 10 m, cheap, make large modules

Crystals: ~ 2 m, harder to grow. CMS E-cal

Setup

Initial Goal: 10⁻¹¹ Eventual Goal: 10⁻¹⁴

Observe Individual Event No pile up

> High Event Rate Fast Scintillator

Plastics or Crystals ~ ns response

Protocol

Signal

1. Observe β activity consistent with initial decay

2. Within ~ ns, observe $1^{st} \gamma$ in inner module

3. In that \sim ns, no other energy in detector

Backgrounds?

Intrinsic Background for ⁶⁰Co

Can 2nd y fake 1st?

Soft β + Energy Resolution of 1.33 MeV?

Energy Resolution

Produce both. Confuse 1.33 MeV γ for 1.17 MeV γ

Requiring single γ only eliminates background

Soft β to 2+ and Soft Compton γ Populate $2 + (a) 10^{-3}$.

Soft β + Soft 1.33 MeV = β to 4+ and 1.17 γ ?

Geometry Soft β to 2+ and Soft Compton γ

Geometry separates $\beta \& \gamma$.

Confusion only if both hit same scintillator (\sim cm)

Simulated reach $\sim 10^{-11}$

Possible Elimination?

Separate source from inner module. Require well separated $\beta \& \gamma$

Absent in ²⁴Na where $E_1 >> E_2$

$LY \times E \times Q \pm \sqrt{E \times LY \times Q} \implies E_m$

- **Energy Resolution**
- Soft β to 2+ and mis-measured energy
 - Measure energy from light yield (LY)
- Light yield set by quantum efficiency of photodetector (Q)
 - **Plastic Scintillators: LY ~ 10000/MeV**
 - **PMT: Q ~ 0.25**

- Simulated reach $\sim 10^{-11}$
- Absent in ²⁴Na where $E_1 >> E_2$

Other Backgrounds

Detector Dead Volumes?

Well calibrated inner modules

Radiation Damage < 10⁴ Grays

Further limit through separation

Cosmic Rays

Veto event with energy outside inner module

Require well separated β and γ in inner modules within ~ ns

Many radiation lengths separate inner module from environment

Protyping underway in Texas A&M by Rupak Mahapatra's group

 $\mathcal{L} \supset g_p \phi^*$

Need Branching fraction in E2 transitions.

Similar to y transitions

 $H_{\rm int}^{\phi} = g_p R_p^i R_p^j \nabla_i \nabla_j$

Γ $\overline{\Gamma}$

Model

$$\phi \bar{\Psi}_p \Psi_p + \mu^2 \phi^2$$

$$\phi \qquad H_{\rm int}^{\gamma} = e R_p^i R_p^j \nabla_i \epsilon_j$$

$$rac{\phi}{\gamma}\sim rac{g_p^2}{e^2}$$

Poor constraints on baryonic forces > 100 keV

Relevant for light dark matter experiments

Potentially cause Type 2 Supernova

Reach

Constraints

Constraints

Probe Past Supernova? $(> 10^{12}/s)$

Not limited by availability of source. Complex Handling!

Avoid pile up?

- Resolve individual events hard to get good energy resolution beyond ns response times
 - Geometric Separation of Events
 - Hard Limit: Trigger Electronics!
 - **Better Nuclear Levels?**
- Gamma Cascades in forbidden channels? Enhanced branching fraction for scalars?
 - Axions: M1 transitions ⁶⁵Cu -> ⁶⁵Ni?

Conclusions

Where is this New Physics? Mass? Strength?

10¹⁹ GeV (Quantum Gravity)

Dark Matter, Dark Energy, Inflation...

Neutrinos, Gravitational Waves

