

# The Physics Program at TRIUMF

On-site and off-site research in nuclear and particle physics.

Jens Dilling

Associate Laboratory Director Physical Sciences TRIUMF



## TRIUMF is one of Canada's major investments in large-scale research infrastructure



Founded in 1968, the laboratory is centered around the world's largest cyclotron and its secondary beams.







#### TRIUMF had in 2019 ~1200 users from over 40 countries

**TRIUMF** is a Canadian asset, a point of entry into the international ecosystem of sister laboratories around the world



## TRIUMF's research portfolio on- and off-site



## **TRIUMF's research portfolio**

- Use of accelerators at TRIUMF:
  - Secondary beams available:
    - Radioactive isotopes
    - Muons & pions
    - Neutrons
  - We also have primary beams:
    - Protons and electrons
- Use of accelerators around the world (primary and 2<sup>nd</sup> beams):
  - Hadron beams LHC at CERN
  - Anti-proton beams at CERN
  - Neutrino beams at J-PARC



## **TRIUMF's accelerator complex: on-site activities**



#### **Nuclear Physics at TRIUMF**

**Exploration of** evolution of 106(98,91) 1783 nuclear shell structure, deformations, shapes, ground & excited state **Nuclear Structure** properties & Dynamics **Nuclear Astrophysics Direct and indirect** measurements of The "Three Pillars" important of experimental reactions and nuclear physics decays for nucleosynthesis research at and stellar **TRIUMF-ISAC** evolution

Precision Tests of Fundamental Interactions

Precision tests of the Standard Model using atom trapping, laser manipulation, decay modes

## **%TRIUMF**

## DETAIL LOOK AT THE THREE PILLARS:

#### • NUCLEAR ASTROPHYSICS

- NUCLEAR STRUCTURE AND DYNAMICS
- PRECISION TEST OF FUNDAMENTAL INTERACTIONS
- Very interdisciplinary approach of all three pillars
- 18 experiment installations





#### NUCLEAR ASTROPHYSICS Capabilities at ISAC

#### SONIK Array: elastic scattering phaseshifts (p,p), $(\alpha,\alpha)$



TITAN Penning Trap & MR-TOF: ground-state masses (1<sup>st</sup> order parameter for *r*-process), in-trap decay spectroscopy

**GRIFFIN Spectrometer:** total measurement of ground-state & decay properties:  $\beta$ +,  $\beta$ -, EC, e<sup>+</sup>e<sup>-</sup>,  $\beta$ -*n*,  $t_{1/2}$ 



Low Energy (30 keV, stopped)



TIGRESS & Ancillary Detectors: Fusion-evaporation, transfer reaction studies e.g. (*d,p*) etc

IRIS Solid H, D target Indirect measurements (d,p), (p,n),  $(p,\alpha)$  etc



EMMA Spectrometer: couple with TIGRESS for transfer, direct  $(p,\gamma)$  eytc



High Energy (1.8 – 16 MeV/a.m.u)



## **%TRIUMF**

## DETAIL LOOK AT THE THREE PILLARS:

- NUCLEAR ASTROPHYSICS
- NUCLEAR STRUCTURE AND DYNAMICS
- PRECISION TEST OF FUNDAMENTAL INTERACTIONS





β

ISOBAR

 $J^{\pi}_{ISOMER}$ 

 $J^{\pi}_{\ GS}$ 

Enhances decay of interest

## Nuclear Spectroscopy with GRIFFIN

GRIFFIN is a powerful spectrometer for decay spectroscopy studies with rare-isotopes



HPGe: branching ratios, multipolarities and mixing ratios

LaBr<sub>3</sub>: level lifetimes



Zero-Degree Fast scintillator Fast-timing signal for betas

#### PACES: 5 Cooled Si(Li)s Detects Internal Conversion Electrons and alphas/protons





 $\beta$   $\gamma$   $e^{-1}$ 

γ γ

T<sub>1/2</sub> Longer

 $T_{1/2}$  Shorter

SCEPTAR: 10+10 plastic scintillators Detects beta decays and determines branching ratios



E,  $J^{\pi}$   $\tau$ 

E,J<sup> $\pi$ </sup>  $\tau$ 

e

DESCANT Neutron array Detects neutrons to measure betadelayed neutron branching ratios

### **Recent Nuclear Structure and Dynamics studies at ISAC**

<sup>160-166</sup>Eu. <sup>156,158,160,162,166</sup>Tm:

Z = 50

N = 28

rare-earth region

Development of collectivity in



<sup>118</sup>In: Collective 2p-2h intruder states in <sup>118</sup>Sn K. Ortner *et al.*, PRC 102, 024323 (2020).

Z =

N = 2

<sup>10</sup>C, <sup>14</sup>O, <sup>22</sup>Mg, <sup>62</sup>Ga:
Superallowed Fermi beta
decays
A.D. MacLean *et al.*, Accepted to
PRC (2020).
M.R. Dunlop *et al.*,
PRC 96, 045502 (2017).

<sup>31,32</sup>Na, <sup>33-35</sup>Mg: Island **Z** of inversion

<sup>72,74,76,78,80,82</sup>Ga, <sup>72,74</sup>Cu: Triaxiality and shape coexistence F.H. Garcia *et al.*, PRL 125, 172501 (2020).

Z = 82

<sup>188-200</sup>TI: Development of

collectivity in Hg isotopes

B. Olaizola et al., PRC 100, 024301 (2019).

<sup>46,47,50-54</sup>K, <sup>50</sup>Ca: Single-particle and pair states near doubly-magic <sup>48</sup>Ca

J.K. Smith *et al.*, Accepted to PRC (2020).
J. Pore *et al.*, PRC 100, 054327 (2019).
A.B. Garnsworthy *et al.*, PRC 96, 044329 (2017).

<sup>228,230</sup>Fr: Probing Octupole deformation and collectivity in Radium isotopes.

Calibrations and development with <sup>9</sup>Li, <sup>26</sup>Na, <sup>66</sup>Ga beams

<sup>142-152</sup>La: Octupole collectivity and shape coexistence in Ce isotopes

 $^{145,146}\text{Cs:}\ \beta\text{-delay}\ neutron\ measurements$  with DESCANT, fast-timing with LaBr\_3

<sup>128-132</sup>Cd, <sup>129-133</sup>In:

Nuclear structure and r-process nucleosynthesis at the N=82 shell closure

Y. Saito *et al.*, PRC 102, 024337 (2020).
K. Whitmore *et al.*, PRC 102, 024327 (2020).
R. Dunlop *et al.*, PRC 99, 045805 (2019).
R. Dunlop *et al.*, PRC 93, 062801(R) (2016).

#### Technical and Overview Publications

J.K. Smith *et al.*, NIM A 922, 47 (2019).
A.B. Garnsworthy *et al.*, NIM A 918, 9 (2019).
A.B. Garnsworthy *et al.*, NIM A 853, 85 (2017).
U. Rizwan *et al.*, NIM A 820, 126 (2016).
A.B. Garnsworthy, Acta Phys.Pol. B, 47, 713 (2016).
C.E. Svensson and A.B. Garnsworthy, Hyp. Int. 225, 127 (2014).



## **%TRIUMF**

## DETAIL LOOK AT THE THREE PILLARS:

- NUCLEAR ASTROPHYSICS
- NUCLEAR STRUCTURE AND DYNAMICS
- PRECISION TEST OF FUNDAMENTAL INTERACTIONS



#### Atomic parity violation test with laser trapped francium

FrPNC collab: Manitoba, TRIUMF, Maryland, W&M, San Luis Potosí







### Francium Fountain Electric Dipole Moment (EDM) **Experiment at TRIUMF**

#### Collaborators:

B. Feinberg, H. Gould, Y. Li, C. Munger, Y. Murakami\*, H. Nishimura, C. Timossi (LBNL); R. Collister, C. Cummings\*, P. Dicks\*, J. MacFarlane\* (LBNL Alumni) \*Student J. Behr, M. Pearson, A. Teigelhoefer (**TRIUMF**); U. Jentschura (Missouri S&T)

### Francium Fountain EDM Experiment

Francium is sensitive to an electron EDM and other T-violating moments.

A fountain experiment has a low risk of false positive and false negative results

Trapping Fr Atoms at TRIUMF

• More than 10<sup>9</sup> Fr<sup>+</sup>/s delivered

 TRIUMF expertise in trapping shortlived radioactive atoms.

Maximize number of trapped Fr atoms

GOAL: Discover or rule out EDM beyond current limit.

### Francium Fountain Electric Dipole Moment (EDM) Experiment at TRIUMF





#### **Experimental Development Using Cesium at LBNL**

- Inexhaustible supply of stable Cs
- Inexpensive diode lasers



Jessica MacFarlane & Preston Dicks taking data with the magnetic shield test stand (2020)

#### But compared to Fr, a Cs experiment is

- 9 times less sensitive to electron EDM
- 10 times more sensitive to systematics
- Delayed by wildfires and pandemics



Yukei Murakami, Rob Collister & Yan Li rebuiding a Cs magnetooptical trap (2019)

### GOAL: Plan to move set-up to TRIUMF in 2021/22.

### **TRINAT: TRIumf Neutral Atom Trap for β-decay**



Most accurate nuclear  $\beta$ asymmetry using polarized <sup>37</sup>K Fenker PRL 120 062502  $\rightarrow$  Complementary constraints on interactions making right-handed  $\nu$ 's

Next: asymmetry of nuclear recoils from <sup>37</sup>K Similar sensitivity to **4-fermion contact** interactions as LHC p+p  $\rightarrow e^- + E_{\perp}^{\text{miss}}$ projected 0.04 pp->e+E<sub>1</sub><sup>miss</sup>  $(C_{T}\equiv C^{|}_{T})/C_{A}$ 13TeV 36fb<sup>-1</sup> 0.02 -CMS 2018 0.00 ·  $\pi \rightarrow e \nu \gamma$ -0.02 -2009 -0.04 -Ft[(m/E)]2016 0.06 -0.02 0.02 -0.06  $(C_s \equiv C_s^{|})/C_v$ 



Test *T*-reversal <sup>38m</sup>K  $\rightarrow$  <sup>38</sup>Ar+ $\beta \nu \gamma$  $\vec{p}_{\nu} \cdot \vec{p}_{\beta} \times \vec{p}_{\gamma} \xrightarrow{t \to -t} - \vec{p}_{\nu} \cdot \vec{p}_{\beta} \times \vec{p}_{\gamma}$ Unique for 1st generation



We consider  $D\hat{J} \cdot \frac{\vec{p_{\beta}}}{E_{\beta}} \times \frac{\vec{p_{\nu}}}{E_{\beta}}$  in <sup>45</sup>K 'isospin-forbidden mirror' decay: *T*-reversal breaking enhanced by 4 to 100 X (must measure 1st)  $\rightarrow$ complementary to neutron EDM

#### **TITAN:** Ion traps for high-precision mass spectrometry and in-trap decay spectroscopy.





#### **Penning trap**

- mass via  $2\pi v_c = q/m \cdot B$
- Precisions of  $\frac{\delta m}{m} \ge 10^{-9}$
- Demonstrated for  $T_{1/2} > 9$ ms
- Boosted by high charge states
- CVC hypothesis, unitarity of quark-mixing matrix, 2β0v emitters, ...

#### **EBIT charge breeder**

• ms charge breeding or • in-trap decay spectroscopy

ions, nuclear excitation by electron

capture, certain forbidden decays



22

## **TRIUMF's accelerator complex: on-site activities**



## **TUCAN project** (TRIUMF UltraCold Advanced Neutron Source and EDM experiment)

Goals:

- 1) build the strongest UCN source in the world
- 2) search for neutron electric dipole moment (nEDM) with sensitivity of 10<sup>-27</sup> ecm

#### **UCN** source

- Spallation neutron production
- Heavy water and deuterium moderator
- Superfluid helium-4 converter
- UCN are extracted to experiments
- Option: Two experiment ports: nEDM & additional experiment (option)

Status and timeline:

2017 - first UCN in Canada, 70 000 UCN per shot 2018 - UCN source conceptual design review completed 2018-2019 - experiments for next generation UCN source

2020 – He cryostat completed and successfully tested 2021 – Installation of source at TRIUMF and cryo testing 2022 – First UCN production with new source 2023 – Ready for EDM experiment



## **TUCAN project** (TRIUMF UltraCold Advanced Neutron Source and EDM experiment)

#### Goals:

- 1) build the strongest UCN source in the world
- 2) search for neutron electric dipole moment (nEDM) with sensitivity of 10<sup>-27</sup> ecm

#### nEDM

- Room-temperature spectrometer
- Ramsey-type experiment with polarized UCN
- Two measurement cells
- Superior B field control

Status and timeline: 2020 – magnetically shielded room ordered 2021 – starting detailed design 2022 – assembly of MSR, first UCN storage in EDM cells 2023 – First Ramsey cycles



#### COMPLETED

## **TWIST: Precision Muon Decay**

Alberta, UBC, Montreal, Regina, TRIUMF, Kurchatov, Texas A&M, Valparaiso



- Test of Weak Interaction
- "Michel parameters" improved by a factor 10 compared to previous expt's PRL 106, 041804 (2011)
  - Improved limits on right-handed current
  - Improved limits on new muon-electron coupling
- Inclusive limits on asymmetric two body muon decays PRD91, 052020(2015)
- Muon decay-in-orbit in µ-AI PRD 80, 052012 (2009)
- Charged-particle spectra from μ<sup>-</sup> capture on Al PRC101, 035502(2020)



Most Accurate Test of Charged Current Lepton Flavor Universality (comparable to T decays)

*Theory*: 
$$R_{e/\mu}^{th} = (1.2352 \pm 0.0002) x 10^{-4}$$

PIENU Result :  $R_{e/\mu}^{\exp \pi} = 1.2344 \pm 0.0030 x 10^{-4}$ 

Order of magnitude improvements on sterile v mixing coefficients and rare decays: New rare decays (2020):  $BR(\pi^+ \rightarrow \mu^+ \nu \nu \overline{\nu}) < 8.6 x 10^{-6}$ ;  $BR(\pi^+ \rightarrow e^+ \nu \nu \overline{\nu}) < 1.7 x 10^{-7}$ 

LFU Violation: Massive Sterile Neutrinos in  $\pi^+ \rightarrow \mu/e^+ v_h$ 









## **%TRIUMF**

## Off site research program

## • CERN:

- ATLAS
- ALPHA

## • J-PARC:

- T2K
- Hyper-K



## ATLAS @LHC (CERN) – Operation & Analysis



## **CRIVER ALPHA Antihydrogen Experiment at CERN**

### **ALPHA-2: spectroscopy**

- Test of CPT invariance via precision spectroscopy
- Some recent highlights
  - Hyperfine spectroscopy [Nature 2017]
  - 1S-2S spectroscopy at 10<sup>-12</sup> level [Nature 2018]
  - 1S-2P Lyman-alpha transition [Nature 2018]
  - Fine structure and Lamb shift [Nature 2020]
  - Demonstration of Laser cooling [Submitted]

#### **ALPHA-g: gravity**

- Test of Weak Equiv. Principle by "dropping" anti-H
- Radial TPC designed and built at TRIUMF
- Getting ready for first measurement in 2021











31

2020-11-03

## **Physics at T2K and Hyper-K**

- Neutrino oscillations and CP violation
  - T2K analysis shows weak indication of CP violation in neutrino oscillations
  - Hyper-K will have CP violation discovery potential at 5σ for 57% of parameter space
  - TRIUMF leadership in analysis for both experiments
- and atmospheric neutrino measurements





## **TRIUMF/Canadian contributions to HyperK**

- Intermediate Water Cherenkov
  - NuPRISM concept
    - moving near detector to cancel systematics
  - mPMT
    - photosensor with fine granularity
  - Calibration
    - photogrammetry
    - photosensor test facility (PTF)
- Beam
  - hadron production study (EMPHATIC)
    - compact spectrometer with Nd permanent magnet
- Data analysis
  - Event reconstruction using machine learning







### Summary

- TRIUMF has a comprehensive and complementary physics program in NP and PP, experiment and theory.
- Precision experiments with 2<sup>nd</sup> beams
- Energy frontier
- Strength in AMO techniques and BSM tests
- Expertise in detectors, DAQ and analysis

Broad user base and well-connected to universities as well as international partners

## **<b>∂**TRIUMF

## Thank you Merci

#### www.triumf.ca

Follow us @TRIUMFLab





## Discovery, accelerated