Fundamental physics with molecules: From electric dipole moments to dark matter candidates

> Robert Berger Fachbereich Chemie, Philipps-Universität Marburg

Developing New Directions in Fundamental Physics (DND) 2020, TRIUMF, Vancouver, Canada and CENPA, Washington, USA, 4 November 2020

"Never measure anything but frequency" (says Arthur L. Schawlow)

"A diatomic molecule is a molecule with one atom too many." (says Arthur L. Schawlow)

An atom is an atom too many. (says the string-theoretician)

An atom is a diatomic molecule lacking the essential atom!

An atom is at least an atom too few!

Let the molecule do the job!

Fundamental symmetries on various levels

Biology Biochemistry Chemistry Molecular physics Atomic physics Nuclear physics Particle physics

- Continuous space-time symmetries (e.g. translation, rotation)
- Discrete symmetries (e.g. time reversal, space inversion)
- Permutation symmetry
- Unitary symmetries

Opportunities and Challenges

- Close-lying levels of opposite parity
- Strong enhancement factors
- Large number of levels
- Large number of levels
- Laser cooling
- Theoretical analysis

Effective electroweak Hamiltonian

$$\hat{H}_{\rm ew} = \hat{H}_{\rm pc} + \hat{H}_{\rm pv}$$
$$\hat{H}_{\rm pc} = \hat{H}_{\rm em} + \hat{H}_{\rm w,pc}$$
$$\hat{H}_{\rm pv} = \hat{H}_{\rm w,pv}$$

$$\hat{H}_{pc}|+\rangle = E_{+}|+\rangle$$

$$\mathcal{P}|+\rangle = +|+\rangle$$

$$\hat{H}_{pc}|-\rangle = E_{-}|-\rangle$$

$$\mathcal{P}|-\rangle = -|-\rangle$$

$$|L\rangle = (|+\rangle + |-\rangle)/\sqrt{2}$$

$$|L\rangle = \mathcal{P}|R\rangle$$

$$|R\rangle = (|+\rangle - |-\rangle)/\sqrt{2}$$

$$\begin{pmatrix} \boldsymbol{E}_{+} & V_{\rm pv} \\ V_{\rm pv} & \boldsymbol{E}_{-} \end{pmatrix} \begin{pmatrix} \boldsymbol{C}_{+} \\ \boldsymbol{C}_{-} \end{pmatrix} = E_{1,2} \begin{pmatrix} \boldsymbol{C}_{+} \\ \boldsymbol{C}_{-} \end{pmatrix}; \quad \boldsymbol{\epsilon} \sim \frac{V_{\rm pv}}{\boldsymbol{E}_{+} - \boldsymbol{E}_{-}}$$

Levels of opposite parity in atoms

Lamb shifts in H-like atoms: Johnson, Soff, At. Data Nucl. Data Tables, 1985, 33, 405

Levels of opposite parity in atoms

Cs $[E(7P_{1/2}) - E(7S_{1/2})]/h$: 95 THz

Wood, Bennett, Cho, Masterson, Roberts, Tanner, Wieman, Science, 1997, 275, 1759

Levels of opposite parity in diatomics

$|\Omega angle = \mathcal{P}|-\Omega angle; \quad |\Omega angle = \mathcal{T}|-\Omega angle$

Splitting depends on molecule and coupling situation: On the order of 10 GHz in BaF, 0.3 GHz in HgF

Review: Kozlov, Labzowsky, J. Phys. B, 1995, 28, 1933; Kozlov, Sov. Phys. JETP, 1985, 89, 1114

$$|L
angle = \mathcal{P}|R
angle$$

$$egin{aligned} \langle L | \hat{H}_{ ext{em}} | L
angle &= \langle R | \mathcal{P}^{-1} \hat{H}_{ ext{em}} \mathcal{P} | R
angle \ &= \langle R | \hat{H}_{ ext{em}} | R
angle \end{aligned}$$

$$\hat{H}_{\rm em}|+\rangle = E_+|+\rangle$$
$$\mathcal{P}|+\rangle = +|+\rangle$$
$$\hat{H}_{\rm em}|-\rangle = E_-|-\rangle$$
$$\mathcal{P}|-\rangle = -|-\rangle$$

$$|L\rangle = (|+\rangle + |-\rangle) / \sqrt{2}$$
$$|L\rangle = \mathcal{P}|R\rangle$$
$$|R\rangle = (|+\rangle - |-\rangle) / \sqrt{2}$$

Hydrogen peroxide (H_2O_2)

 $|E_+ - E_-|/h$ on the order of 300 GHz

$$\begin{split} & \log \left[\frac{\Delta E_{\pm}}{hc \text{ cm}^{-1}} \right] = P_1 \log \sqrt{f} + P_2 - P_3 \sqrt{f} \\ & \Delta E_{\text{pv}}/hc \approx 10^{-12} \text{ cm}^{-1} \gg 10^{-76} \text{ cm}^{-1} \approx \Delta E_{\pm}/hc \\ & E_{\pm} - E_{-} |/h \text{ on the order of } 10^{-75} \text{ GHz or } 10^{-42} \text{ yHz} \end{split}$$

Berger, Gottselig, Quack, Willeke, Angew. Chem. Int. Ed., 2001, 40, 4195

Molecular parity violation

Reviews: Berger in: Relativistic electronic structure theory, Part 2, (Ed: P. Schwerdtfeger), **2004**, 188; Crassous, Chardonnet, Saue, Schwerdtfeger, *Org. Biomol. Chem.*, **2005**, *3*, 2218; Quack, Stohner, Willeke, *Annu. Rev. Phys. Chem.*, **2008**, *59*, 741

Molecular parity violation

Letokhov, Phys. Lett. A, **1975**, 53, 275; Kompanets, Kukudzhanov, Letokhov, Gervits, Opt. Commun, **1976**, 19, 414; Arimondo, Glorieux, Oka, Opt. Commun., **1977**, 23, 369; Daussy, Marrel, Amy-Klein, Nguyen, Bordé, Chardonnet, Phys. Rev. Lett., **1999**, 83, 1554; Berger, Quack, Sieben, Willeke, Helv. Chim. Acta, **2003**, 86, 4048; Berger, Laubender, Quack, Sieben, Stohner, Willeke, Angew. Chem. Int. Ed., **2005**, 44, 3623;

Chiral molecules: Quack, *Chem. Phys. Lett.*, **1986**, *132*, 147; Berger, *Phys. Chem. Chem. Phys.*, **2003**, *4*, 395–399; Diatomic molecules: DeMille, Cahn, Murphree, Rahmlow, Kozlov, *Phys. Rev. Lett.*, **2008**, *100*, 023003

Opportunities and Challenges

- Close-lying levels of opposite parity
- Strong enhancement factors
- Huge number of levels
- Huge number of levels
- Laser cooling
- Theoretical analysis

Laser cooling for precision spectroscopy

	V(q)	V(q)	q	-
FCF	1 000 cyc.	10 000 сус.	100 000 cyc.	1 000 000 cyc.
0.9	0	0	0	0
0.99	0.000043	0	0	0
0.999	0.368	0.0000452	0	0
0.9999	0.9048	0.3679	0.0000454	0
0.99999	0.99005	0.90484	0.36788	0.0000453

Classes for cooling of molecules with lasers:

Class 1: Electron in lone orbital; Class 2: Electron in atom-like orbital;

Class 3: Electron in diffuse orbital (heavy element)

Diatomics: DiRosa, *Eur. Phys. J. D*, **2004**, *31*, 395; Classification: Isaev, Hoekstra, Berger, *Phys. Rev. A*, **2010**, *82*, 052521; Experiment: Shuman, Barry, DeMille, *Nature*, **2010**, *467*, 820; Review: Isaev, Berger, *Chimia*, **2018**, *72*, 375

Classes for cooling with lasers

1. "Electron in lone orbital"

2. "Atom-like electron in molecule"

3. Heavy-atom compounds

Shuman, Barry, DeMille, *Nature*, **2010**, *467*, 820; Isaev, Hoekstra, Berger, *Phys. Rev. A*, **2010**, *82*, 052521; Hummon, Yeo, Stuhl, Collopy, Xia, Ye, *Phys. Rev. Lett.*, **2013**, *110*, 143001

	Molecula	r parameters of	RaF	
		RaF		
			4c FS-CCSD	
M		$r_{ m e}(^{2}\Pi_{1/2})/a_{0}$	4.24	
V E _h -1.4 -1.5 -1.6		$r_{ m e}(^{2}\Sigma_{1/2})/a_{0}$	4.24	
		$ ilde{\omega}_{ m e}(^{2}\Pi_{1/2})/{ m cm}^{-1}$	4 28	
-1.7	R	$ ilde{\omega}_{ m e}(^{2}\Sigma_{1/2})/{ m cm}^{-1}$	432	
4	6 8 10 a ₀	$ ilde{D}_{ m e}(^{2}\Pi_{1/2})/{ m cm}^{-1}$	3.13 10^4	
		$ ilde{D}_{ m e}(^{2}\Sigma_{1/2})/{ m cm}^{-1}$	3.21 10^4	
		$ ilde{T}_{ m e}/{ m cm}^{-1}$	$1.40 10^4$	

Isaev, Hoekstra, Berger, *Phys. Rev. A*, **2010**, *82*, 052521; Isaev, Berger, *arXiv:1302.5682*

	Molecula	r parameters of	RaF
		RaF	
			4c FS-CCSD
V		$r_{ m e}(^{2}\Pi_{1/2})/a_{0}$	4.29
V E _h -1.4 -1.5 -1.6		$r_{ m e}(^{2}\Sigma_{1/2})/a_{0}$	4.29
		$ ilde{\omega}_{ m e}(^{2}\Pi_{1/2})/{ m cm}^{-1}$	<mark>4</mark> 28
-1.7	R	$ ilde{\omega}_{ m e}(^{2}\Sigma_{1/2})/{ m cm}^{-1}$	431
4	$1 6 8 10 a_0$	$ ilde{D}_{ m e}(^{2}\Pi_{1/2})/{ m cm}^{-1}$	4.24 10^4
		$ ilde{D}_{ m e}(^{2}\Sigma_{1/2})/{ m cm}^{-1}$	4.26 10^4
		$ ilde{T}_{ m e}/{ m cm}^{-1}$	$1.33 \ 10^4$

Proposed synthesis of RaF

Thermoneutral fluorination:

$$\operatorname{Ra}^{+} \xrightarrow{\operatorname{CF}_{4}} \operatorname{Ra}F^{+} \xrightarrow{\operatorname{Cs}} \operatorname{Ra}F^{*}(^{2}\Pi) \xrightarrow{-h\nu} \operatorname{Ra}F(^{2}\Sigma)$$
$$\operatorname{Ra}^{+} \xrightarrow{\operatorname{CF}_{4}} \operatorname{Ra}F^{+} \xrightarrow{\operatorname{Na}} \operatorname{Ra}F(^{2}\Sigma)$$

Endothermic fluorination:

$$\operatorname{Ra}^{+} \xrightarrow{\operatorname{SiF}_{4}} \operatorname{Ra}F^{+} \xrightarrow{\operatorname{Cs}} \operatorname{Ra}F^{*}(^{2}\Pi) \xrightarrow{-h\nu} \operatorname{Ra}F(^{2}\Sigma)$$
$$\operatorname{Ra}^{+} \xrightarrow{\operatorname{SiF}_{4}} \operatorname{Ra}F^{+} \xrightarrow{\operatorname{Na}} \operatorname{Ra}F(^{2}\Sigma)$$

RaF

Garcia Ruiz, Berger, Billowes, Binnersley, Bissell, Breier, Brinson, Chrysalidis, Cocolios, Cooper, Flanagan, Giesen, de Groote, Franchoo, Gustafsson, Isaev, Koszorús, Neyens, Perrett, Ricketts, Rothe, Schweikhard, Vernon, Wendt, Wienholtz, Wilkins, Yang, *Nature*, **2020**, *581*, 396

RaF $^{207}\text{Bi}^{19}\text{F}_{2}^{+}$ $^{226}Ra^{19}F^{+}$ ²²⁹Th¹⁶O⁺ Counts / 800ps Time of flight / us

Garcia Ruiz, Berger, Billowes, Binnersley, Bissell, Breier, Brinson, Chrysalidis, Cocolios, Cooper, Flanagan, Giesen, de Groote, Franchoo, Gustafsson, Isaev, Koszorús, Neyens, Perrett, Ricketts, Rothe, Schweikhard, Vernon, Wendt, Wienholtz, Wilkins, Yang, *Nature*, **2020**, *581*, 396

RaF

A
$${}^{2}\Pi_{1/2} \leftarrow X {}^{2}\Sigma^{+}$$
, $0' - 0$ transition

$$\tilde{\nu}_{exp} = 13284.7(5) \text{ cm}^{-1}; \tilde{\nu}_{theo} = 13300(1200) \text{ cm}^{-1}$$

Garcia Ruiz, Berger, Billowes, Binnersley, Bissell, Breier, Brinson, Chrysalidis, Cocolios, Cooper, Flanagan, Giesen, de Groote, Franchoo, Gustafsson, Isaev, Koszorús, Neyens, Perrett, Ricketts, Rothe, Schweikhard, Vernon, Wendt, Wienholtz, Wilkins, Yang, *Nature*, **2020**, *581*, 396

RaF

Garcia Ruiz, Berger, Billowes, Binnersley, Bissell, Breier, Brinson, Chrysalidis, Cocolios, Cooper, Flanagan, Giesen, de Groote, Franchoo, Gustafsson, Isaev, Koszorús, Neyens, Perrett, Ricketts, Rothe, Schweikhard, Vernon, Wendt, Wienholtz, Wilkins, Yang, *Nature*, **2020**, *581*, 396

Cooling of polyatomics with lasers? M=Mg, Ca, Sr, Ba, Ra; $MF \rightarrow MX$ X = pseudohalogenNC CN PC CP NCO OCN NCS SCN NCSe SeCN N_3 X = residues such as OH, SH, CH₃

Isaev, Berger, Conference on Cold and Controlled Molecules and Ions, Monte Verita, Switzerland, 2014;
Isaev, Berger, arXiv:1504.08326; Phys. Rev. Lett., 2016, 116, 063006;
Pseudohalogens: Birckenbach, Kellermann, Ber. Dtsch. Chem. Ges., 1925, 58, 786

Cooling of polyatomics with lasers

Proposed Candidates: CaOH, CaNC, MgCH₃, CaCH₃, CaCHDT . . .

Isaev, Berger, *Conference on Cold and Controlled Molecules and Ions*, Monte Verita, Switzerland, **2014**; Isaev, Berger, *arXiv:1504.08326*; *Phys. Rev. Lett.*, **2016**, *116*, 063006; Review: Isaev, Berger, *Chimia*, **2018**, *72*, 375 Review on chiral methyl group: Floss, Lee, Acc. Chem. Res., **1993**, *26*, 116.

Opportunities and Challenges

- Close-lying levels of opposite parity
- Strong enhancement factors
- Huge number of levels
- Huge number of levels
- Laser cooling
- Theoretical analysis

Nuclear physics and BSM physics with molecules

Standard model physics		BSM physics
P-even	P-odd	P,T-odd
Charge radius	Weak nuclear charge	k_s,k_T,k_p
Magnetic dipole moment	Anapole moment	EDMs, Schiff moment
Electric quadrupole moment		Magnetic quadrupole moment
Magnetic octupole moment		Electric octupole moment
		ALPs
		WIMPs
		fuzzy CDM

P,T-odd electric dipole moments

P,T-odd electric dipole moments

Biology **Biochemistry** Chemistry Molecular physics Atomic physics Nuclear physics Particle physics

Traditional quantum chemistry

Beyond traditional quantum chemistry

basis set, electron correlation, relativity

$$\hat{H}_{\rm pv}^{\rm (e-nucl)} = \hat{H}_{\rm pv}^{\rm (e-nucl,1)} + \hat{H}_{\rm pv}^{\rm (e-nucl,2)} = \sum_{i=1}^{n} \left[\hat{h}_{\rm pv}^{(1)}(i) + \hat{h}_{\rm pv}^{(2)}(i) \right]$$

Schrödinger picture

$$\hat{h}_{\rm pv}^{(1)} = \frac{G_{\rm F}}{4\sqrt{2}m_{\rm e}c} \sum_{A=1}^{N} Q_{{\rm w},A} \{\vec{\sigma} \cdot \vec{p}, \rho_A(\vec{r})\}_+$$

Dirac picture

$$\hat{h}_{\mathrm{pv}}^{(1)} = \frac{G_{\mathrm{F}}}{2\sqrt{2}} \sum_{A=1}^{N} Q_{\mathrm{w},A} \boldsymbol{\gamma}^{5} \rho_{A}(\vec{r}); \quad \boldsymbol{\gamma}^{5} = \begin{bmatrix} \mathbf{0}_{2\times 2} & \mathbf{1}_{2\times 2} \\ \mathbf{1}_{2\times 2} & \mathbf{0}_{2\times 2} \end{bmatrix}$$

Bouchiat, Bouchiat, J. Phys., **1974**, 35, 899; Hegstrom, Rein, Sandars, J. Chem. Phys., **1980**, 73, 2329; Wiesenfeld, Mol. Phys., **1988**, 64, 739; Berger in: Relativistic electronic structure theory, Part 2, (Ed: P. Schwerdtfeger), **2004**

$$\frac{1}{2}Q_{\mathrm{w},A} \rho_A(\vec{r}) = (Zg_{\mathrm{V}}^{\mathrm{p}} + Ng_{\mathrm{V}}^{\mathrm{n}})\rho_A(\vec{r})$$
$$\approx Zg_{\mathrm{V}}^{\mathrm{p}}\rho_{\mathrm{p},A}(\vec{r}) + Ng_{\mathrm{V}}^{\mathrm{n}}\rho_{\mathrm{n},A}(\vec{r}) = \rho_{\mathrm{av},A}'(\vec{r})$$

$$\hat{H}_{\rm pv}^{\rm (e-nucl)} = \hat{H}_{\rm pv}^{\rm (e-nucl,1)} + \hat{H}_{\rm pv}^{\rm (e-nucl,2)} = \sum_{i=1}^{n} \left[\hat{h}_{\rm pv}^{(1)}(i) + \hat{h}_{\rm pv}^{(2)}(i) \right]$$

Schrödinger picture

$$\hat{h}_{\rm pv}^{(2)} = \frac{G_{\rm F}}{4\sqrt{2}m_{\rm e}c} \sum_{A=1}^{N} K_{{\rm A},A} \left\{ \vec{\sigma} \cdot \vec{p}, \vec{\sigma} \cdot \vec{I}\rho_A(\vec{r}) \right\}_{+}$$

Dirac picture

$$\hat{h}_{\rm pv}^{(2)} = \frac{G_{\rm F}}{2\sqrt{2}} \sum_{A=1}^{N} K_{{\rm A},A} \,\vec{\alpha} \cdot \vec{I} \,\rho_A(\vec{r}); \quad \vec{\alpha} = \begin{bmatrix} \mathbf{0}_{2\times 2} & \vec{\sigma} \\ \vec{\sigma} & \mathbf{0}_{2\times 2} \end{bmatrix}$$

Gorshkov, Kozlov, Labzowsky, Sov. Phys. JETP, **1982**, 55, 1042; Barra, Robert, Wiesenfeld, Phys. Lett. A, **1986**, 115, 443; Wiesenfeld, Mol. Phys., **1988**, 64, 739

Berger in: Relativistic electronic structure theory, Part 2, (Ed: P. Schwerdtfeger), **2004**; Zel'dovich, *JETP*, **1957**, *33*, 1531; Flambaum, Khriplovich, *Phys. Lett. B*, **1984**, *146*, 367

P-odd and **P,T-odd** effect in diatomics

$$\begin{split} \widehat{H}_{\rm sr} &= B\vec{\mathcal{N}}^2 + \gamma\,\vec{\mathbf{S}}^{\rm eff}\cdot\vec{\mathcal{N}} + \vec{\mathbf{S}}^{\rm eff}\cdot\widehat{\mathbf{A}}\cdot\vec{\mathbf{I}} + \vec{\mathcal{N}}\cdot\widehat{\mathbf{C}}\cdot\vec{\mathbf{I}} \\ &+ W_{\rm a}(K_A/2)[\vec{\lambda}\times\vec{\mathbf{S}}^{\rm eff}]\cdot\vec{\mathbf{I}} + (W_{\rm s}k_{\rm s} + W_{\rm d}d_{\rm e})\vec{\lambda}\cdot\vec{\mathbf{S}}^{\rm eff} \end{split}$$

Review: Kozlov, Labzowsky, *J. Phys. B*, **1995**, *28*, 1933; Isaev, Hoekstra, Berger, *Phys. Rev. A*, **2010**, *82*, 052521; Isaev, Berger, *Phys. Rev. A*, **2012**, *86*, 062515; Isaev, Berger, *J. Mol. Spectrosc.*, **2014**, *300*, 26–30; Isaev, Berger, arXiv:1302.5682; Kudashov, Petrov, Skripnikov, Mosyagin, Isaev, Berger, Titov, *Phys. Rev. A*, **2014**, *90*, 052513; Gaul, Berger, *J. Chem. Phys.*, **2017**, *117*, 014109; Gaul, Berger, *J. Chem. Phys.*, **2020**, *152*, 044101

Electron electric dipole moment

 \mathcal{P}, \mathcal{T} -violation: $H_{\text{ptv}} + H_{\text{ptc}} = (d\vec{E} + m\vec{B}) \cdot \vec{F}/|\vec{F}|$

 \vec{E} strongly enhanced in polar molecules (YbF, ThO, RaF)

Regan, Commins, Schmidt, DeMille, *Phys. Rev. Lett.*, **2002**, *88*, 071805; Hudson, Sauer, Tarbutt, Hinds, *Phys. Rev. Lett.*, **2002**, *89*, 023003; Hudson, Kara, Smallman, Sauer, Tarbutt, Hinds, *Nature*, **2011**, *473*, 493; ACME Collaboration, *Science*, **2014**, *343*, 269; Cairncross, Gresh, Grau, Cossel, Roussy, Ni, Zhou, Ye, Cornell, *Phys. Rev. Lett.*, **2017**, *119*, 153001; ACME Collaboration, *Nature*, **2018**, *562*, 355 source (lower figure): Nature

P,T-odd effects, 4c approaches

$$\begin{split} \hat{h}_{\mathrm{s}}^{(1)} &= \mathrm{i} \frac{G_{\mathrm{F}}}{\sqrt{2}} \sum_{A=1}^{N} k_{\mathrm{s},A} Z_{A} \boldsymbol{\gamma}_{0} \boldsymbol{\gamma}_{5} \rho_{A}(\vec{r}); \quad \boldsymbol{\gamma}_{0} = \begin{bmatrix} \mathbf{1}_{2 \times 2} & \mathbf{0}_{2 \times 2} \\ \mathbf{0}_{2 \times 2} & -\mathbf{1}_{2 \times 2} \end{bmatrix} \\ W_{\mathrm{s}} &= \langle \hat{H}_{\mathrm{s}} \rangle / k_{\mathrm{s}} \\ \hat{h}_{\mathrm{e}} &= -d_{\mathrm{e}} (\boldsymbol{\gamma}_{0} - \mathbf{1}_{4 \times 4}) \vec{\Sigma} \cdot \vec{E}_{\mathrm{eff}}; \quad \vec{\Sigma} = \begin{bmatrix} \vec{\sigma} & \mathbf{0}_{2 \times 2} \\ \mathbf{0}_{2 \times 2} & \vec{\sigma} \end{bmatrix} \\ W_{\mathrm{d}} &= \langle \hat{H}_{\mathrm{e}} \rangle / d_{\mathrm{e}} = -\vec{E}_{\mathrm{eff}} \cdot \vec{d}_{\mathrm{e}} / d_{\mathrm{e}} \end{split}$$

 $W_{
m s}$ and $E_{
m eff}$ can be estimated from $W_{
m a}$, e.g.:

$$W_{\rm s}/W_{\rm a} = Z3\gamma/(2\gamma + 1); \gamma = \sqrt{1 - (\alpha Z)^2}$$

Kozlov, Sov. Phys. JETP, 1985, 62, 1114; Dzuba, Flambaum, Harabati, Phys. Rev. A, 2011, 84, 052108

P,**T**-odd effect in diatomics

cGHF results

P-odd and **P,T-odd** effect in diatomics

$$\begin{split} \widehat{H}_{\rm sr} &= B\vec{\mathcal{N}}^2 + \gamma\,\vec{\mathbf{S}}^{\rm eff}\cdot\vec{\mathcal{N}} + \vec{\mathbf{S}}^{\rm eff}\cdot\widehat{\mathbf{A}}\cdot\vec{\mathbf{I}} + \vec{\mathcal{N}}\cdot\widehat{\mathbf{C}}\cdot\vec{\mathbf{I}} \\ &+ W_{\rm a}(K_A/2)[\vec{\lambda}\times\vec{\mathbf{S}}^{\rm eff}]\cdot\vec{\mathbf{I}} + (W_{\rm s}k_{\rm s} + W_{\rm d}d_{\rm e})\vec{\lambda}\cdot\vec{\mathbf{S}}^{\rm eff} \end{split}$$

Review: Kozlov, Labzowsky, *J. Phys. B*, **1995**, *28*, 1933; Isaev, Hoekstra, Berger, *Phys. Rev. A*, **2010**, *82*, 052521; Isaev, Berger, *Phys. Rev. A*, **2012**, *86*, 062515; Isaev, Berger, *J. Mol. Spectrosc.*, **2014**, *300*, 26–30; Isaev, Berger, arXiv:1302.5682; Kudashov, Petrov, Skripnikov, Mosyagin, Isaev, Berger, Titov, *Phys. Rev. A*, **2014**, *90*, 052513; Gaul, Berger, *J. Chem. Phys.*, **2017**, *117*, 014109; Gaul, Berger, *J. Chem. Phys.*, **2020**, *152*, 044101

P,T-odd effect in diatomics

Gaul, Marquardt, Isaev, Berger, Phys. Rev. A, 2019, 99, 032509

Gaul, Marquardt, Isaev, Berger, Phys. Rev. A, 2019, 99, 032509; ThO, HfF⁺: Fleig, Phys. Rev. A, 2017, 96, 040502

P-odd and P,T-odd effect in diatomics

$$\begin{split} \widehat{H}_{\rm sr} &= B\vec{\mathcal{N}}^2 + \gamma\,\vec{\mathbf{S}}^{\rm eff}\cdot\vec{\mathcal{N}} + \vec{\mathbf{S}}^{\rm eff}\cdot\widehat{\mathbf{A}}\cdot\vec{\mathbf{I}} + \vec{\mathcal{N}}\cdot\widehat{\mathbf{C}}\cdot\vec{\mathbf{I}} \\ &+ W_{\rm a}(K_A/2)[\vec{\lambda}\times\vec{\mathbf{S}}^{\rm eff}]\cdot\vec{\mathbf{I}} + W_{\rm d}(k_{\rm s}W_{\rm s}/W_{\rm d} + d_{\rm e})\vec{\lambda}\cdot\vec{\mathbf{S}}^{\rm eff} \end{split}$$

Gaul, Marquardt, Isaev, Berger, Phys. Rev. A, 2019, 99, 032509

P,T-odd effect in laser-coolable triatomics

Very similar behaviour for MF and MOH

Gaul, Berger, arXiv:1811.05749; Gaul, Berger, Phys. Rev. A, 2020, 101, 012508

Detection of molecular parity violation

Letokhov, *Phys. Lett. A*, **1975**, *53*, 275; Kompanets, Kukudzhanov, Letokhov, Gervits, *Opt. Commun*, **1976**, *19*, 414; Arimondo, Glorieux, Oka, *Opt. Commun.*, **1977**, *23*, 369; Berger, Quack, Sieben, Willeke, *Helv. Chim. Acta*, **2003**, *86*, 4048; Berger, Laubender, Quack, Sieben, Stohner, Willeke, *Angew. Chem. Int. Ed.*, **2005**, *44*, 3623;

Experimental vibrational frequency shifts

Experimental upper bound for C–F stretch fundamental: $\Delta \nu_{\rm pv} / \nu < 10^{-13}$

Daussy, Marrel, Amy-Klein, Nguyen, Bordé, Chardonnet, Phys. Rev. Lett., **1999**, 83, 1554; Ziskind, Daussy, Marrel, Chardonnet, Eur. Phys. J. D, **2002**, 20, 219

Theoretical vibrational frequency shifts

	$E_{\rm pv}/($	$\Delta \nu_{\rm pv} / (\nu 10^{-13})$		
Molecule	ZORA (2c)	$DHFC(4c)^{\mathrm{a}}$	$BP(1c)^{\mathrm{b}}$	ZORA(2c)
(S)-CHBrClF	-1.5	-1.2	-1.47	+0.0007
(S)-CHBrCll	-24.7			
(S)-CHBrFl	-38.5	-37.1		+0.0178
(S)-CHCIFI	-13.7	-13.0		+0.0094
(S)-CBrClFl	+5.1	+4.4		
$(S) extsf{-}CHAtFI$	+2314			-1.072

a) Schwerdtfeger, Laerdahl, Chardonnet, Phys. Rev. A, 2002, 65, 042508

b) with atomic scaling factors, unscaled value: -0.8; Berger, J. Chem. Phys. 2008, 129, 154105

Dark matter search with chiral molecules

• P-odd interaction with pseudoscalar cosmic field

$$\hat{H}_{\mathrm{a,PS1}} = \eta \hbar \omega_{\mathrm{a}} \sin(\omega_{\mathrm{a}} t) \gamma^{5}$$

 P-odd interaction with pseudovector cosmic field

$$\hat{H}_{\rm pv,cosmic} = b_0^{\rm e}(t)\gamma^5$$

$\langle \gamma^5 \rangle$ depends on electron helicity in chiral molecules

Gaul, Isaev, Kozlov, Berger, *Phys. Rev. Lett.*, **2020**, *125*, 123004; *Phys. Rev. A*, **2020**, *102*, 032816; Atoms: Roberts, Stadnik, Dzuba, Flambaum, Leefer, Budker, *Phys. Rev. D*, **2014**, *90*, 096005

Dark matter search with chiral molecules

Experimental upper bound for C–F stretch fundamental: $|\Delta \nu| = 9.4 \pm 5.1 \pm 12.7 \text{ Hz}; \ \Delta \nu_{\rm pv} / \nu < 10^{-13}$

Theoretical analysis:

$$\begin{split} \Delta_{(R,S)} \langle \gamma^5 \rangle \approx 7.4 \times 10^{-10} \\ |b_0^{\rm e}| \lesssim \left| \frac{12.7 \text{ Hz}}{\mathcal{O}(10^{-10})} h \right| \sim \mathcal{O}(10^{-12} \text{ GeV}) \end{split}$$

Gaul, Isaev, Kozlov, Berger, *Phys. Rev. Lett.*, **2020**, *125*, 123004; *Phys. Rev. A*, **2020**, *102*, 032816; Atoms: Roberts, Stadnik, Dzuba, Flambaum, Leefer, Budker, *Phys. Rev. D*, **2014**, *90*, 096005

Dark matter search with chiral molecules

Gaul, Isaev, Kozlov, Berger, *Phys. Rev. Lett.*, **2020**, *125*, 123004; *Phys. Rev. A*, **2020**, *102*, 032816; Atoms: Roberts, Stadnik, Dzuba, Flambaum, Leefer, Budker, *Phys. Rev. D*, **2014**, *90*, 096005

Conclusions

- Test of BSM physics with (polyatomic) molecules
- Precision spectroscopy on heavy, radioactive molecules offers ample of opportunities
- Both simple models and accurate predictions play important role for preparation of experiments

Conclusions (short version)

Let the molecule do the job!

Acknowledgement

Mikhail Kozlov Timur Isaev Konstantin Gaul T.F. Giesen A.A. Breier I. Tietje A. Welker R.F. Garcia Ruiz J. Billowes C.L. Binnersley M.L. Bissell A. Brinson K. Chrysalidis T.E. Cocolios B. Cooper K.T. Flanagan R.P. de Groote S. Franchoo F.P. Gustafsson

Á. Koszorús G. Neyens H. Perrett C.M. Ricketts S. Rothe L. Schweikhard A.R. Vernon K.D.A. Wendt F. Wienholtz S.G. Wilkins X.F. Yang

CSC; HLRN

Volkswagen foundation (Group) German science foundation (FOR, SPPs, SFB 1083, SFB 1319) State of Hesse (ELCH-LOEWE)