Electric Dipole Moment Prospects: Experiments and Interpretation Tim Chupp University of Michigan Los Alamos Nat. Lab (Rosen Scholar)

- 1. EDMs in a Global Context
- 2. Brief history
- 3. Recent and current efforts
- 4. Interpretation
- 5. The horizon

Office of Science

Thursday:

09:00	Introduction Adam RITZ
	https://ca01web.zoom.us/j/69998354433 (password: 972986)
	EDMs and molecules: state of the art and prospects for rapid improvements in hadronic and leptonic CP violation
	https://ca01web.zoom.us/j/69998354433 (password: 972986)
10:00	Assembling and disassembling Dr. Will CAIRNCROSS molecules for quantum science and precision measurement
	Probing Physics Beyond the Standard ModelKia Boon NGwith the JILA eEDM Experiment
	Discussion https://ca01web.zoom.us/j/69998354433 (password: 972986)
	Health break
	Treatti break
11:00	https://ca01web.zoom.us/j/69998354433 (password: 972986)
	Extending the reach of fundamental symmetries research with beta decay and measurements with polarized ultracold neutrons
	https://ca01web.zoom.us/j/69998354433 (password: 972986)
12:00	Probing for BSM physics throughProf. Chen-Yu LIUPrecision Measurements of the NeutronLifetime and the Neutron Electric Dipole Moment
	https://ca01web.zoom.us/j/69998354433 (password: 972986)
	Discussion
	https://ca01web.zoom.us/j/69998354433 (password: 972986)

Future Directions EDMs - Tim Chupp

Electric Dipole Moment

$$H = -\vec{\mu} \cdot \vec{B} - \vec{d} \cdot \vec{E} = -\mu \vec{J} \cdot \vec{B} - d\vec{J} \cdot \vec{E}$$
$$\overrightarrow{P_e T_e} - d\vec{J} \cdot \vec{E}$$

Electric Dipole Moment

$$H = -\vec{\mu} \cdot \vec{B} - \vec{d} \cdot \vec{E} = -\mu \vec{J} \cdot \vec{B} - d\vec{J} \cdot \vec{E}$$
$$\overrightarrow{P_e T_e} - d\vec{J} \cdot \vec{E}$$

Baryon Asymmetry requires BSMP $\mathcal{P} \longrightarrow$ Baryon Asymmetry \longrightarrow NEW PHYSICS (BSMP)

Fact: There is more matter than antimatter

$$n_{p} \neq n_{\overline{p}} \quad \eta = \frac{n_{p} - n_{\overline{p}}}{n_{p} + n_{\overline{p}}} \approx few \times 10^{-10}$$
(WMAP/PLANCK, [⁴He]_{,...})

A) Initial condition – NO (inflation)

B) Evolution from $\eta=0$

2) CP Violation make and EDM

A. Shakarov Nobel Peace Prize 1975 3) Rapid expansion (non-equilibrium)

Another possibility: CP violation in neutrinos + "seesaw" 11/4/20 Future Directions EDMs - Tim Chupp

Electroweak Baryongenesis

Kuzmin, Rubakov, Shaposhnikov 87; Cohen, Kaplan, Nelson 90&95

- 1. First-order EW PT produces expanding bubbles.
- 2. C and CP violation near the bubble wall induce asymmetries.
- 3. Electroweak physics (sphalerons) convert this to baryons

Gavela, Hernandez, Orloff, Pene'94; Huet + Sather '95

Standard-model/CKM EDMs small

Vanish at 2-loops for quarks and 3-loops for leptons Khriplovich, Zhitnitsky (1982), McKellar et al., (1987)

DISCOVERY POTENTIAL!

EDMs probe TeV-scale "new" physics

Particle Interactions Polarize Particles, Atoms, Molecules

$$\vec{S} = S\vec{J} = \frac{1}{10} \left\langle r^2 \vec{r}_p \right\rangle - \frac{1}{6} Z \left\langle r^2 \right\rangle \left\langle \vec{r}_p \right\rangle$$

$$d_{A} = \eta_{e}d_{e} + \kappa_{S}S(\theta_{QCD}, g_{\pi}) + (k_{T}C_{T} + k_{S}C_{S}) + h.o.$$

~Z³ ~Z³

Rev. Mod. Phys. v. 91 015001 (2019)

EDM results

Rev. Mod. Phys., Vol. 91, No. 1 (Jan 2019)

System	Result	95% u.l.	ref.	
	Paramagnetic syst	tems		
Xe^m	$d_A = (0.7 \pm 1.4) \times 10^{-22}$	3.1×10^{-22} e-cm	a	
Cs	$d_A = (-1.8 \pm 6.9) \times 10^{-24}$	1.4×10^{-23} e-cm	b	
	$d_e = (-1.5 \pm 5.7) \times 10^{-26}$	$1.2\times 10^{-25}~{\rm e-cm}$		
Tl	$d_A = (-4.0 \pm 4.3) \times 10^{-25}$	$1.1\times 10^{-24}~{\rm e-cm}$	c	
	$d_e = (6.9 \pm 7.4) \times 10^{-28}$	1.9×10^{-27} e-cm		
YbF	$d_e = (-2.4 \pm 5.9) \times 10^{-28}$	$1.2\times 10^{-27}~{\rm e-cm}$	d	2017
ThO	$\omega^{\mathcal{N}E} = -510 \pm 485 \; \mu \text{rad/s}$	2000	e	2018 (8x)
	$d_e = (4.3 \pm 4.0) \times 10^{-30}$	$1.1\times 10^{-29}~{\rm e-cm}$		
	$C_S = (2.9 \pm 2.7) \times 10^{-10}$	7.3×10^{-10}		
HfF^+	$2\pi f^{BD} = 0.6 \pm 5.6 \text{ mrad/s}$		f	
	$d_e = (0.9 \pm 7.9) \times 10^{-29}$	16×10^{-29} e-cm		
	Diamagnetic syst	ems		
n	$d_n = (-0.0 \pm 1.1) \times 10^{-26}$	2.2×10^{-26} e-cm	g	2020 (1.6x)
¹⁹⁹ Hg	$d_A = (2.2 \pm 3.1) \times 10^{-30}$	7.4×10^{-30} e-cm	h	2017 (4x)
¹²⁹ Xe	$d_A = (1.4 \pm 6.9) \times 10^{-28}$	1.4×10^{-27} e-cm	i	2019 (5x)
²²⁵ Ra	$d_A = (4 \pm 6) \times 10^{-24}$	1.4×10^{-23} e-cm	j	2016
TlF	$d = (-1.7 \pm 2.9) \times 10^{-23}$	6.5×10^{-23} e-cm	k	
	Particle systems			
μ	$d_{\mu} = (0.0 \pm 0.9) \times 10^{-19}$	1.8×10^{-19} e-cm	l	
Λ	$d_{\Lambda} = (-3.0 \pm 7.4) \times 10^{-17}$	7.9×10^{-17} e-cm	m	

Sole-source analysis $d_j = \alpha_{ij} P_j$

LE Parameter	system	95% u.l.
d_e	ThO	$9.2 \times 10^{-29} \ e \ {\rm cm}$
C_S	ThO	8.6×10^{-9}
C_T	$^{199}\mathrm{Hg}$	3.6×10^{-10}
$ar{g}^{(0)}_{\pi}$	$^{199}\mathrm{Hg}$	3.8×10^{-12}
$ar{g}^{(1)}_{\pi}$	$^{199}\mathrm{Hg}$	3.8×10^{-13}
$ar{g}^{(2)}_{\pi}$	$^{199}\mathrm{Hg}$	2.6×10^{-11}
\bar{d}_n^{sr}	neutron	$3.3 \times 10^{-26} \ e \ {\rm cm}$
$ar{d}_p^{sr}$	TlF	$8.7 \times 10^{-23} \ e \ {\rm cm}$
\bar{d}_p^{sr}	199 Hg	$2.0 \times 10^{-25} \ e \ {\rm cm}$
	Other parameters	5
d_d	$\approx 3/4d_n$	$2.5 \times 10^{-26} \ e \ {\rm cm}$
$\bar{ heta}$	$\approx \bar{g}_{\pi}^{(0)}/(0.015)$	2.5×10^{-10}
$ ilde{d}_d - ilde{d}_u$	$5 \times 10^{-15} \bar{g}_{\pi}^{(1)} \ e \ \mathrm{cm}$	$2 \times 10^{-27} e \mathrm{cm}$

Future Directions EDMs - Tim Chupp

Global Analysis: d_e and C_S T.C. & M. Ramsey-Musolf – Phys. Rev. C 91 035502 (2015) Also: Fleig and Jung J. High Energy Phys. 2018, 12 (2018)

Diagmagetic atoms and nucleons

T.C. & M. Ramsey-Musolf – Phys. Rev. C **91** 035502 (2015)

	d_n^{0}	d_n^{1}	C _T	g_{π}^{0}	$g_{\pi}{}^1$
neutron	1	-1		X	X
Xe, Hg, TlF			Х	X	Х
Ra			X	X	X
proton	1	+1		Х	X
d, ³ H, ³ He				X	X

Schiff Moment

$$\begin{aligned} d_n &= \bar{d}_n^{\rm sr} - \frac{eg_A \bar{g}_\pi^{(0)}}{8\pi^2 F_\pi} \left\{ \ln \frac{m_\pi^2}{m_N^2} - \frac{\pi m_\pi}{2m_N} + \frac{\bar{g}_\pi^{(1)}}{4\bar{g}_\pi^{(0)}} \left(\kappa_1 - \kappa_0\right) \frac{m_\pi^2}{m_N^2} \ln \frac{m_\pi^2}{m_N^2} \right\} \\ &\approx \bar{d}_n^{sr} - (1.44 \times 10^{-14} g_\pi^{(0)} - 8.3 \times 10^{-16} g_\pi^{(1)}) e - cm \\ &S = g_{\pi NN} \left(a_0 \bar{g}_{CP}^0 + a_1 \bar{g}_{CP}^1 + a_2 \bar{g}_{CP}^2 \right) \\ &\bar{g}_{CP}^0 \approx 0.027 \ \theta_{QCD} \\ & \text{Future Directions EDMs - Tim Chupp} \end{aligned}$$

A global analysis

TC&MJ Ramsey-Musolf: PHYSICAL REVIEW C **91**, 035502 (2015)

	d_0^{sr}	d_1^{sr}	C _T	g_{π}^{0}	g_{π}^{1}
neutron	1	-1			
Xe, Hg, TlF, Ra			Х	Х	Х

$$d_A = \alpha_{C_T} C_T + \kappa_S (a_0 \overline{g}_{\pi}^0 + a_1 \overline{g}_{\pi}^1 + a_2 \overline{g}_{\pi}^2)$$

$$d_n = \bar{d}_n^{\rm sr} - \frac{eg_A \bar{g}_\pi^{(0)}}{8\pi^2 F_\pi} \left\{ \ln \frac{m_\pi^2}{m_N^2} - \frac{\pi m_\pi}{2m_N} + \frac{\bar{g}_\pi^{(1)}}{4\bar{g}_\pi^{(0)}} \left(\kappa_1 - \kappa_0\right) \frac{m_\pi^2}{m_N^2} \ln \frac{m_\pi^2}{m_N^2} \right\}$$

A global analysis TC&MJR Musolf: PHYSICAL REVIEW C 91, 035502 (2015)

Results

	d_0^{sr}	d_1^{sr}	C _T	g_{π}^{0}	g_{π}^{1}
neutron	1	-1			
Xe, Hg, TlF, Ra			Х	Х	Х

Upper limits (95% c.l.) with $\alpha_{g_{\pi}^{1}}(\text{Hg}) = -4.9 \times 10^{-17}$								
$C_T \times 10^7$	$ar{g}^{(0)}_{\pi}$	$ar{g}^{(1)}_{\pi}$	$\bar{d}_n^{ m sr}~({ m ecm})$					
3.0×10^{-7}	1.2×10^{-9}	2.9×10^{-10}	1.8×10^{-23}					

Experiments
$$H = -\vec{\mu} \cdot \vec{B} - \vec{d} \cdot \vec{E}$$

- Strong electric field
- Large signal needs POLARIZATION (usually optical pumping) • MEASURE FREQUENCIES $\propto \frac{1}{\tau^{3/2}}$ Per HV dwell
- AND MAGNETIC FIELDS (Co)magnetometry

Paramagnetic Molecules Large E, small τ 20

- 1. Large internal electric fields.
 - 1. $E_{eff} \sim 10^{11} \text{ V/cm}.$
 - Compared to $E_{lab} < 10^5 \text{ V/cm}$.
- 2. Accessible internal electric fields.
 - Easy to electically polarize, need only $E_{lab} \sim 1 \text{ V/cm}$.
- 3. Rejection of systematic errors.
 - Electron spins triple/L=1 (J=0) μ small
 - E_{eff} *independent* of E_{lab}.

High polarizability

Neutron electric dipole moment

From Wikipedia, the free encyclopedia

"NEDM" redirects here. For the Sussex experiment, see Sussex/RAL/ILL neutron EDM experiment.

The **neutron electric dipole moment (nEDM)** is a measure for the distribution of positive and negative charge inside the neutron. A finite electric dipole moment can only exist if the centers of the negative and positive charge distribution inside the particle do not coincide. So far, no neutron EDM has been found. The current best upper limit amounts to $|d_{\rho}| < 2.9 \times 10^{-26} e^{-cm}$.^[1]

 $\sigma_d \approx \frac{1}{2E} \frac{\hbar}{\tau} \frac{1}{S/N}$

Ultra-Cold Neutrons (UCN)

SLOW (<8 m/s), "long" wavelength (50 nm) Ns with OPTICAL PROPERTIES

RAL-Sussex-ILL n-EDM

¹⁹⁹Hg comagnetometer

Putting it all together: panEDM

Next Generation nEDM Experiments

$$\sigma_d \approx \frac{1}{2E} \frac{\hbar}{\tau} \frac{1}{S/N}$$

Cryogenic UCN source, room temperature storage cells

- PSI
- ILL panEDM (Munich/ILL)
- PNPI Petersburg
- TRIUMF TUCAN
- US SNS
- LANL nEDM

Projected: 10-100x improvement (10⁻²⁸ e-cm)

Stolen from Brad Filippone

¹⁹⁹Hg and ¹²⁹Xe

PRL 116, 161601 (2016)

PHYSICAL REVIEW LETTERS

week ending 22 APRIL 2016

Ş

Reduced Limit on the Permanent Electric Dipole Moment of ¹⁹⁹Hg

B. Graner,^{*} Y. Chen (陳宜), E. G. Lindahl, and B. R. Heckel Department of Physics, University of Washington, Seattle, Washington 98195, USA

 $d_{\text{Hg}} = (-2.20 \pm 2.75_{\text{stat}} \pm 1.48_{\text{syst}}) \times 10^{-30} e \text{ cm}.$

Measurement Technique

•Atoms are contained in a stack of 4 vapor cells in a common B field

•2 conducting plastic electrodes at the same potential hold the 2 outer cells

•Opposite E field causes an EDM to shift the relative frequency of the 2 inner cells

•¹⁹⁹Hg is pumped to align spins with laser beams

Precession is observed by detecting
 Faraday rotation of weak, linear
 polarized light

¹²⁹Xe EDM with ³He Comagnetometry

HeXe

PHYSICAL REVIEW LETTERS 123, 143003 (2019)
N. Sachdeva,^{1,*} I. Fan,² E. Babcock,³ M. Burghoff,² T. E. Chupp,¹ S. Degenkolb,^{1,4} P. Fierlinger,⁵ E. Kraegeloh,^{5,1} W. Kilian,² S. Knappe-Grüneberg,² F. Kuchler,^{5,6} T. Liu,² M. Marino,⁵ J. Meinel,⁵ Z. Salhi,³ A. Schnabel,² J. T. Singh,⁷ S. Stuiber,⁵ W. A. Terrano,⁵ L. Trahms,² and J. Voigt²

¹Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA ²Physikalisch-Technische Bundesanstalt (PTB) Berlin, 10587 Berlin, Germany ³Jülich Center for Neutron Science, 85748 Garching, Germany ⁴Institut Laue-Langevin, 38042 Grenoble, France

⁵ Excellence Cluster Universe and Technische Universität München, 85748 Garching, Germany ⁶ TRIUMF, Vancouver, British Columbia V6T 2A3, Canada ⁷ National Superconducting Cucletron Laboratory and Department of Physics & Astronomy

⁷National Superconducting Cyclotron Laboratory and Department of Physics & Astronomy, Michigan State University, East Lansing, Michigan 48824, USA

 $d_A(^{129}\text{Xe}) = (1.4 \pm 6.6_{\text{stat}} \pm 2.0_{\text{syst}}) \times 10^{-28} \ e \text{ cm}$ $|d_A(^{129}\text{Xe})| < 1.4 \times 10^{-27} \ e \text{ cm} (95\% \text{ C.L.}),$

> Other recent work PRA **100**, 022505 (2019) - MIXed arXiv 2008.07975

> > Future Directions EDMs - Tim Chupp

Author's personal copy

SQUID Detection

Octupole Enhancemed Schiff Moment Intrinsic (body-frame) moment Polarizabitliy

NH₃ (see Feynman vol 3.)

Reflection Symmetry

Future Directions EDMs - Tim Chupp

Nuclei with Octupole Deformation/Vibration

(Haxton & Henley; Auerbach, Flambaum, Spevak; Engel et al., Hayes & Friar, etc.)

		223 Rn	223 Ra	225 Ra	223 Fr	129 Xe	$^{199}\mathrm{Hg}$	
	$t_{1/2}$	$23.2 \mathrm{m}$	$11.4 \mathrm{~d}$	$14.9~\mathrm{d}$	$22 \mathrm{m}$			
	Ι	7/2	3/2	1/2	3/2	1/2	1/2	
	ΔE th (keV)	37^{*}	170	47	75			
	$\Delta E \exp (\text{keV})$	(-)	50.2	55.2	160.5			
	$10^{11}S$ (e-fm ³)	375	150	115	185	0.6	-0.75	
	$10^{28} d_A \ (e-cm)$	1250	1250	940	1050	0.3	2.1	
	$\eta_{qq} = 3.75 \times 10^{-4}$					86Rn 218	3/ 226	₈₈ Ra
Ref: Dzuba	PRA66, 012111 (2	002) - Ur	ncertaintie	es of 50%	(0.5-	i i	/224	220 / 228-
*Based on V	Woods-Saxon Poter	ntial					222	< <i>21</i> //
† Nilsson Po	otential Prediction	is 137 ke	V		0			226 2224
NOTES:	1				-0.5	\$ 1.0 ⁻¹⁻¹⁻		
Ocutpole En Engel et al. a	hancements	ım et al			-1.0	≧ 		≤ 0.5 - 1 ⁻¹ - 1 ↓ _ 1 [*] ,1 [*] ,1 [*] ↓ _ 220, 224, 228
Even octupo	le vibrations enhar	nce S (Eng	gel, Flam	baum& Z	Zelevins	ky)		
11/4/20-						• /		34

Future Directions EDMs - Tim Chupp

Search for EDM of ²²⁵Ra at Argonne (Thanks Matt Dietrich)

Second Ra-225 EDM Measurements

225Ra production may use FRIB etc. (harvesting)

Cold molecule **Nuclear** Time-Reversal Experiment (CeNTREX)

(D. DeMille[Chicago+Argonne], T. Zelevinsky [Columbia], D. Kawall [UMass], S. Lamoreaux [Yale])

Incorporates many methods from ACME + new techniques

(slow molecular beam, rotational cooling + cycling fluorescence for detection, etc.)

1st generation design & construction well underway

Future generations of CeNTREX could incorporate

--transverse laser cooling for increased flux

--laser slowing and/or trapping for increased interaction time?

Project 20x improvement on proton EDM (10⁻²⁷ e-cm), 10-100 on θ_{QCD} 11/4/20

¹⁷³YbOH NMQM Experiment @ Caltech

- Building a NMQM search in ¹⁷³YbOH at Caltech
 - ¹⁷³Yb (I=5/2), large quadrupole deformation ($β_2 ≈$ 0.3)
 - Cryogenic buffer gas beam experiment
 - Laser cooling, trapping in future generations?

CBGB Pump into pending mode Spin readout

V. V. Flambaum, D. DeMille, and M. G. Kozlov, PRL 113, 103003 (2014) I. Kozyryev and NRH, PRL 119, 133002 (2017)

D. E. Maison, L. V. Skripnikov, and V. V. Flambaum, PRA 100, 032514 (2019)

M. Denis, Y. Hao, E. Eliav, NRH, M. K. Nayak, R. G. E. Timmermans, A. Borschesvky, J. Chem. Phys. 152, 084303 (2020)

Storage-ring EDMs (e.g. muon) g-2: $\vec{\omega}_a = -\frac{q}{m}a_\mu\vec{B}$ $\vec{\omega}_d = -\frac{q}{2m}d_\mu\left(\frac{\vec{v}}{c}\times\vec{B}+\vec{E}\right)$ $\vec{\omega}_d$, \vec{B}

EDM Signal: out-of-plane oscillation out of phase with ω_a

EDM Signal: out-of-plane oscillation out of phase with ω_a

 $E821: d_{\mu} = (0.9 \pm 1.9) \times 10^{-19} \text{ e-cm}$

Improve by 100x (potential large effort for p,d,³He - Cosy, BNL, FNAL)

Storage ring EDMs Fermilab, Jparc, BNL, COSY

Particle	J	а	$ \vec{p} $ (GeV/c)	γ	$ \vec{B} $ (T)	$ \vec{E} $ (kV/cm)	$ \vec{E}' /\gamma~(\mathrm{kV/cm})$	<i>R</i> (m)	$\sigma_d^{\text{goal}} (e \text{ cm})$	Ref.
μ^{\pm}	1/2	+0.001 17	3.094 0.3 0.5 0.125	29.3 3.0 5.0 1.57	1.45 3.0 0.25 1.0	0.0 0.0 22.0 6.7	4300 8500 760 2300	7.11 0.333 7.0 0.42	$ \begin{array}{r} 10^{-21} \\ 10^{-21} \\ 10^{-24} \\ 10^{-24} \end{array} $	E989 E34 srEDM PSI
p^+	1/2	+1.792 85	0.7007 0.7007	1.248 1.248	$\begin{array}{c} 0.0\\ 0.0\end{array}$	80.0 140.0	80 140	52.3 30.0	10^{-29} 10^{-29}	srEDM JEDI
d^+	1	-0.14299	1.0 1.000	1.13 1.13	0.5 0.135	120.0 33.0	580 160	8.4 30.0	10^{-29} 10^{-29}	srEDM JEDI
³ He ⁺⁺	1/2	-4.184 15	1.211	1.09	0.042	140.0	89	30.0	10 ⁻²⁹	JEDI

EDM results

Rev. Mod. Phys., Vol. 91, No. 1 (Jan 2019)

System	Result	95% u.l.	ref.	
	Paramagnetic syst	tems		
Xe ^m	$d_A = (0.7 \pm 1.4) \times 10^{-22}$	3.1×10^{-22} e-cm	a	
Cs	$d_A = (-1.8 \pm 6.9) \times 10^{-24}$	1.4×10^{-23} e-cm	b	
	$d_e = (-1.5 \pm 5.7) \times 10^{-26}$	$1.2\times 10^{-25}~{\rm e-cm}$		
Tl	$d_A = (-4.0 \pm 4.3) \times 10^{-25}$	$1.1\times 10^{-24}~{\rm e-cm}$	c	
	$d_e = (6.9 \pm 7.4) \times 10^{-28}$	1.9×10^{-27} e-cm		
YbF	$d_e = (-2.4 \pm 5.9) \times 10^{-28}$	1.2×10^{-27} e-cm	d	2017
ThO	$\omega^{\mathcal{N}E} = -510 \pm 485 \; \mu \mathrm{rad/s}$		e	2018 (
	$d_e = (4.3 \pm 4.0) \times 10^{-30}$	$1.1\times 10^{-29}~{\rm e-cm}$		(
	$C_S = (2.9 \pm 2.7) \times 10^{-10}$	7.3×10^{-10}		
HfF^+	$2\pi f^{BD} = 0.6 \pm 5.6 \text{ mrad/s}$		f	
	$d_e = (0.9 \pm 7.9) \times 10^{-29}$	16×10^{-29} e-cm		
	Diamagnetic syst	ems		
n	$d_n = (-0.0 \pm 1.1) \times 10^{-26}$	2.2×10^{-26} e-cm	g	2020 (
¹⁹⁹ Hg	$d_A = (2.2 \pm 3.1) \times 10^{-30}$	7.4×10^{-30} e-cm	h	2017 (
¹²⁹ Xe	$d_A = (1.4 \pm 6.9) \times 10^{-28}$	1.4×10^{-27} e-cm	i	2019 (
²²⁵ Ra	$d_A = (4 \pm 6) \times 10^{-24}$	1.4×10^{-23} e-cm	j	2016
TlF	$d = (-1.7 \pm 2.9) \times 10^{-23}$	6.5×10^{-23} e-cm	k	
	Particle systems			
μ	$d_{\mu} = (0.0 \pm 0.9) \times 10^{-19}$	1.8×10^{-19} e-cm	l	
Λ	$d_{\Lambda} = (-3.0 \pm 7.4) \times 10^{-17}$	7.9×10^{-17} e-cm	m	

8x)

1.6x) 4x) 5x)

The decadal horizon

- Molecules (cold) will rule
 Next generation ACME (CFP-Northwestern)
 Diamagnetic TIF (CeTREX)
 MQMs etc. (N. Hutzler)
 Ra(F) octupole enhancement (Argonne/Dietrich)
- 2. UCNs sources will peak: 10x-100x (SNS nEDM) Magnetometry challenges!
- 3. Storage rings will emerge

$$\sigma_{d} \approx \frac{1}{2E} \frac{\hbar}{\tau} \frac{1}{S/N}$$

A TRIUMF perspective

- 1. TUCAN (nEDM) go-go-go! We are all learning from eachother
- 2. Francium: competes with paramagnetic molecules
- 3. Ocutpole enhancements: (molecules)

Thanks to everyone