Tests of lepton flavor universality and CKM unitarity

$u^{\scriptscriptstyle b}$

Martin Hoferichter

Albert Einstein Center for Fundamental Physics,

UNIVERSITÄT BERN Institute for Theoretical Physics, University of Bern

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

November 4, 2020

Developing New Directions in Fundamental Physics 2020

TRIUMF virtual meeting

- Precision-frontier tests of SM
- Unitarity of CKM matrix

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

• Lepton flavor universality: $\ell = \{e, \mu, \tau\}$ only differ in masses, e.g., in charged current

$$\mathcal{L} = -i \frac{g_2}{\sqrt{2}} \bar{\ell}_i \gamma^{\mu} P_L \nu_j W_{\mu} \left(\delta_{ij} + \varepsilon_{ij} \right)$$

 $\hookrightarrow \varepsilon_{ij} = 0$ in SM

This talk: review of current status and future prospects

Determination of V_{ud} from superallowed β decays

Master formula Hardy, Towner 2018

$$|V_{ud}|^2 = \frac{2984.432(3)\,\mathrm{s}}{\mathcal{F}t(1+\Delta_R^V)}$$

with (universal) radiative corrections Δ_R^V

• Value of V_{ud} crucially depends on Δ_R^V :

Ref.	Δ_R^V
Marciano, Sirlin 2006	0.02361(38)
Seng, Gorchtein, Patel, Ramsey-Musolf 2018	0.02467(22)
Czarnecki, Marciano, Sirlin 2019	0.02426(32)
Seng, Feng, Gorchtein, Jin 2020	0.02477(24)
Hayen 2020	0.02474(31)

Hardy, Towner 2020

Possibly further nuclear corrections

Miller, Schwenk 2008, 2009, Seng, Gorchtein, Ramsey-Musolf 2018, Gorchtein 2018

Master formula Czarnecki, Marciano, Sirlin 2018

 $|V_{ud}|^2 \tau_n (1 + 3g_A^2)(1 + \Delta_{\rm RC}) = 5100.1(7) \, {
m s}$

with radiative corrections Δ_{RC}

- \hookrightarrow need lifetime τ_n and asymmetry $\lambda = g_A/g_V$
- PDG average only considers bottle experiments, latest Pattie et al. 2018

 $\tau_n = 877.7(7)(^{+0.4}_{-0.2}) \,\mathrm{s}$

Latest asymmetry measurement Märkisch et al. 2019

 $\lambda = g_A/g_V = -1.27641(56)$

 Consistent with, but less precise than V_{ud} from superallowed β decays

Determination of V_{ud} from pion β decay

 Master formula Cirigliano, Knecht, Neufeld, Pichl 2003 Czarnecki, Marciano, Sirlin 2020, Feng et al. 2020

$$\begin{split} \Gamma(\pi^+ \to \pi^0 e^+ \nu_e(\gamma)) &= \frac{G_F^2 |V_{\prime\prime \prime \prime}|^2 M_\pi^5 |f_+^\pi(0)|^2}{64 \pi^3} \\ &\times (1 + \Delta_{\rm RC}^{\pi \ell}) I_{\pi \ell} \end{split}$$

with radiative corrections $\Delta_{\rm RC}^{\pi\ell}$

 \hookrightarrow need branching fraction and pion life time

• Resulting V_{ud} extracted from PIBETA 2004 still with relatively large error compared to other β decays

V_{ud} = 0.9739(29)

 Good consistency among all β-decay constraints, including mirror decays Hayen 2020

Indirect determination of V_{ud} from kaon decays: $K_{\ell 2}$

- Kaon-decay constraints derived assuming
 CKM unitarity
- $K_{\ell 2}$ decays: $K \rightarrow \ell \nu_{\ell}$

$$\frac{\frac{V_{us}}{V_{ud}}F_{K}}{F_{\pi}} = \left(\frac{\Gamma(K^{+} \to \mu^{+}\nu_{\mu}(\gamma)M_{\pi}}{\Gamma(\pi^{+} \to \mu^{+}\nu_{\mu}(\gamma)M_{K}}\right)^{1/2} \times \frac{1 - \frac{m_{\mu}^{2}}{M_{\pi}^{2}}}{1 - \frac{m_{\mu}^{2}}{M_{K}^{2}}} \left(1 - \frac{\Delta_{\text{RC}}^{K} - \Delta_{\text{RC}}^{\pi}}{2}\right)$$

- \hookrightarrow typically consider the ratio over $\pi_{\ell 2}$
- Need input for:
 - F_K/F_π
 - Isospin-breaking corrections
 - \hookrightarrow lattice QCD, ChPT

Crivellin, MH 2020

•
$$K_{\ell 3}$$
 decays: $K \to \pi \ell \nu_{\ell}$

$$\begin{split} \mathsf{\Gamma}(\mathcal{K} \to \pi \ell \nu_{\ell}(\gamma)) &= \frac{C_{\mathcal{K}}^2 G_{\mathcal{F}}^2 |V_{\mathcal{U}\mathbf{S}}|^2 M_{\mathcal{K}}^5 |f_+^{\mathcal{K}\pi}(0)|^2}{192 \pi^3} \\ &\times (1 + \Delta_{\mathsf{RC}}^{\mathcal{K}\ell}) I_{\mathcal{K}\ell} \end{split}$$

 $\hookrightarrow \ell = \mu, e$ and two charge channels

- Need input for:
 - $K\pi$ form factor $f_{+}^{K\pi}(0)$
 - Radiative corrections
 - \hookrightarrow lattice QCD, ChPT
- Tensions between
 - $K_{\ell 2}$ and $K_{\ell 3}$ decays
 - Kaon decays and β decays
 - \hookrightarrow apparent violation of CKM unitarity

V_{ud} tension as a sign for the violation of lepton flavor universality?

- Let us parameterize the *W* couplings as $\mathcal{L} = -i \frac{g_2}{\sqrt{2}} \bar{\ell}_i \gamma^{\mu} P_L \nu_j W_{\mu} (\delta_{ij} + \varepsilon_{ij})$
- Modifies Fermi constant in muon decay

$$rac{1}{ au_{\mu}}=rac{(G_{F}^{\mathcal{L}})^{2}m_{\mu}^{5}}{192\pi^{3}}(1+\Delta q)(1+arepsilon_{ee}+arepsilon_{\mu\mu})^{2}$$

 \hookrightarrow measured Fermi constant $G_F = G_F^{\mathcal{L}}(1 + \varepsilon_{ee} + \varepsilon_{\mu\mu})$

V_{ud} tension as a sign for the violation of lepton flavor universality?

- Let us parameterize the *W* couplings as $\mathcal{L} = -i \frac{g_2}{\sqrt{2}} \bar{\ell}_i \gamma^{\mu} P_L \nu_j W_{\mu} (\delta_{ij} + \varepsilon_{ij})$
- Modifies Fermi constant in muon decay

$$rac{1}{ au_{\mu}}=rac{(G_{F}^{\mathcal{L}})^{2}m_{\mu}^{5}}{192\pi^{3}}(1+\Delta q)(1+arepsilon_{ee}+arepsilon_{\mu\mu})^{2}$$

 \hookrightarrow measured Fermi constant $G_F = G_F^{\mathcal{L}}(1 + \varepsilon_{ee} + \varepsilon_{\mu\mu})$

• All β -decay observables affected according to

$$V_{ud}
ightarrow V_{ud}^eta = V_{ud}^\mathcal{L} ig(1 - arepsilon_{\mu\mu}ig)$$

where $V_{ij}^{\mathcal{L}}$ fulfill CKM unitarity

Construct ratio Crivellin, MH 2020

$$R(V_{us}) \equiv \frac{V_{us}^{K_{\mu2}}}{V_{us}^{\beta}} \equiv \frac{V_{us}^{K_{\mu2}}}{\sqrt{1 - (V_{ud}^{\beta})^2 - |V_{ub}|^2}} = 1 - \left(\frac{V_{ud}}{V_{us}}\right)^2 \varepsilon_{\mu\mu} + \mathcal{O}(\varepsilon^2)$$

 \hookrightarrow LFUV effect enhanced by $(V_{ud}/V_{us})^2 \sim 20!$

V_{ud} tension as a sign for the violation of lepton flavor universality?

Observable	Measurement	$\text{Constraint} \times 10^3$
$rac{K ightarrow \pi \mu ar{ u}}{K ightarrow \pi e ar{ u}} \simeq 1 + arepsilon_{oldsymbol{\mu} oldsymbol{\mu}} - arepsilon_{oldsymbol{ee}}$	1.0010(25)	1.0(2.5)
$rac{K ightarrow \mu u}{K ightarrow e u} \simeq 1 + arepsilon_{oldsymbol{\mu} \mu} - arepsilon_{ee}$	0.9978(18)	-2.2(1.8)
$rac{\pi ightarrow \mu u}{\pi ightarrow e u} \simeq 1 + arepsilon_{m \mu \mu} - arepsilon_{ee}$	1.0010(9)	1.0(9)
$rac{ au o \mu u ar{ u}}{ au o e u ar{ u}} \simeq 1 + arepsilon_{\mu\mu} - arepsilon_{ee}$	1.0018(14)	1.8(1.4)
$rac{W ightarrow \mu ar{ u}}{W ightarrow e ar{ u}} \simeq 1 + arepsilon_{oldsymbol{\mu} oldsymbol{\mu}} - arepsilon_{oldsymbol{e} oldsymbol{e}}$	0.9960(100)	-4(10)
$\frac{B \rightarrow D^{(*)} \mu \nu}{B \rightarrow D^{(*)} e \nu} \simeq 1 + \varepsilon_{\mu \mu} - \varepsilon_{ee}$	0.9890(120)	-11(12)
$R(V_{us}) \simeq 1 - \left(rac{V_{\mu d}}{V_{us}} ight)^2 arepsilon_{\mu\mu}$	0.9891(33) (SGPR)	0.58(17)
	0.9927(39) (CMS)	0.39(21)

- Most stringent constraint on $\varepsilon_{\mu\mu}$ thanks to CKM enhancement
- Could explain tension between β decays and kaon decays, but not between K_{ℓ2} and K_{ℓ3} (right-handed currents?)
- Best constraint on $\varepsilon_{\mu\mu} \varepsilon_{ee}$ from

$$R^{\pi}_{e/\mu} = rac{\Gamma(\pi
ightarrow e
u_e(\gamma))}{\Gamma(\pi
ightarrow \mu
u_{\mu}(\gamma))}$$

Searching for the violation of lepton flavor universality in $R_{e/\mu}^{\pi,K}$

SM prediction at two loops Cirigliano, Rosell 2007

$$egin{aligned} R^{\pi}_{artheta/\mu} &= 1.2352(1) imes 10^{-4} \ R^{K}_{arepsilon/\mu} &= 2.477(1) imes 10^{-5} \end{aligned}$$

- \hookrightarrow See talk by Vincenzo Cirigliano
- Experimental status PDG 2020

$$egin{aligned} R^{\pi}_{e/\mu} &= 1.2327(23) imes 10^{-4} \ R^{K}_{e/\mu} &= 2.488(9) imes 10^{-5} \end{aligned}$$

 $\hookrightarrow \text{ in both cases theory far ahead!}$

• Future improvements from PEN, PiENu $(R_{e/\mu}^{\pi})$ and J-PARC E36 $(R_{e/\mu}^{K})$

- Potential improvements for R(V_{us})
 - Radiative corrections for β decays
 - Improved measurements of τ_n and g_A
 - New data on $K_{\ell 3}$ decays
 - \hookrightarrow assumed $\sqrt{2}$ due to neutron decay
- Potential improvements for $\varepsilon_{\mu\mu} \varepsilon_{ee}$
 - Factor 3 from PEN/PiENu
 - Factor 3 for \(\tau\) decays from Belle II
 - \hookrightarrow would probe ε_{ee} below $\mathcal{O}(10^{-3})$

Crivellin, MH 2020

Correlations with B anomalies?

- Modified W couplings ⇒ expect modified
 Z couplings from SU(2)_L invariance
- Example: heavy W', Z' ("vector triplet")
- W' for β decay tension
- Z' can explain $b \rightarrow s\ell\ell$ anomalies
- Via SU(2)_L: constraints from electroweak precision observables

Capdevila, Crivellin, Manzari, Montull 2020

 $g^\ell_{
m 11/22}$: electron/muon coupling

• For $K_{\ell 2}$ and $\pi_{\ell 2}$ decays one uses the ratio

$$\frac{\Gamma(K^+ \to \mu^+ \nu_{\mu}(\gamma)}{\Gamma(\pi^+ \to \mu^+ \nu_{\mu}(\gamma)} = \left(\frac{V_{us}}{V_{ud}}\frac{F_K}{F_{\pi}}\right)^2 \frac{M_K}{M_{\pi}} \left(\frac{1 - \frac{m_{\mu}^2}{M_K^2}}{1 - \frac{m_{\mu}^2}{M_{\pi}^2}}\right)^2 \left(1 + \Delta_{\mathsf{RC}}^K - \Delta_{\mathsf{RC}}^\pi\right)$$

to cancel uncertainties and extract V_{us}/V_{ud}

- Can do the same for $K_{\ell 3}$ and $\pi_{\ell 3}$! Czarnecki, Marciano, Sirlin 2020
- Pion β decay not competitive for V_{us}, but combined with K_{ℓ3} decays improvement by a factor 2–3 would suffice to obtain a competitive value of V_{us}/V_{ud}

BSM searches with pion β decay

Generalize master formula to include effective operators not present in SM

$$\begin{split} & \left[(\pi^+ \to \pi^0 e^+ \nu_e(\gamma)) = \frac{G_F^2 |V_{ud}|^2}{192\pi^3 M_\pi^3} (1 + \Delta_{\mathsf{RC}}^{\pi\ell}) \int_{m_e^2}^{(M_\pi - M_\pi 0)^2} ds \, \lambda^{3/2}(s) \left(1 + \frac{m_e^2}{2s} \right) \left(1 - \frac{m_e^2}{s} \right)^2 \\ & \times \left[|V(s)|^2 + |A(s)|^2 + \frac{4(s - m_e^2)^2}{9sm_e^2} |T(s)|^2 + \frac{3m_e^2 (M_\pi^2 - M_\pi^2 0)^2}{(2s + m_e^2)\lambda(s)} (|S(s)|^2 + |P(s)|^2) \right] \end{split}$$

with V(s), A(s), ... depending on Wilson coefficients c_V , c_A , ...

• Tensor:
$$T(s) = \frac{3s}{2s+m_e^2} \frac{m_e}{M_\pi} c_T B_T^{\pi}(s)$$

- \hookrightarrow suppressed by electron mass and tensor form factor
- Scalar: more competitive constraints, but still not at the same level as other β decays Falkowski, Gonzáles-Alonso, Naviliat-Cuncic 2020
- More on rare pion decays in talk by Vincenzo Cirigliano

Testing Lepton Flavor Universality and CKM Unitarity with Rare

Pion Decays

LOI for Snowmass 2020 Discussion August 27, 2020

A. Aguilar-Arevalo¹, D. Bryman^{2,3}, S. Chen⁴, V. Cirigliano⁵, A. Crivellin^{6,7,8}, S. Cuen-Rochin⁹,
A. Czarnecki¹⁰, L. Doria¹¹, A. Garcia¹², L. Gibbons¹³, C. Glaser¹⁴, M. Gorchtein¹¹, T. Gorringe¹⁵,
D. Hertzog¹², Z. Hodge¹², M. Hoferichter¹⁶, P. Kammel¹², J. Kaspar¹², K. Labe¹³, J. Labounty¹²,
S. Ito¹⁷, W. Marciano¹⁸, S. Mihara¹⁹, R. Mischke³, T. Numao³, C. Ortega Hernandez¹, D. Pocanic¹⁴,
T. Sullivan²⁰

¹Universidad Nacional Autonoma de Mexico, ²University of British Columbia, ³TRIUMF, ⁴Tsinghua University, ⁵Los Alamos National Laboratory, ⁶Paul Scherrer Institute, ⁷University of Zurich, ⁸CERN, ⁹Universidad Autonoma de Sinaloa, ¹⁰University of Alberta, ¹¹University of Mainz, ¹²University of Washington, ¹³Cornell University, ¹⁴University of Virginia, ¹⁵University of Kentucky, ¹⁶University of Bern, ¹⁷Okayama University, ¹⁸Brookhaven National Laboratory, ¹⁹KEK, ²⁰University of Victoria,

Abstract

We describe the physics motivation and concept of a next-generation experiment to measure the charged-pion branching ratio to electrons vs. muons, $R_{e/\mu}$, which is extremely sensitive to new physics at high mass scales. The proposed detector system will also measure pion beta decay, $\pi^+ \rightarrow \pi^0 e^+ \nu(\gamma)$, and other rare decays to high precision. Order of magnitude improvements in sensitivity to these reactions will probe lepton universality at an unprecedented level, determine V_{ud} in a theoretically pristine manner and test CKM unitarity at the quantum loop level.

- Tensions between β decays and kaon decays point to the apparent violation of CKM unitarity
- Could be interpreted as a hint for the violation of lepton flavor universality

 → relation to *B* anomalies and (g − 2)_{µ,e}?
- R(Vus) ideal probe of LFU due to CKM enhancement
- Interesting parameter space probed by forthcoming results on R^π_{e/μ}
- Next-generation PiENu experiment could
 - bring experimental error for $R^{\pi}_{e/\mu}$ even closer to the theoretical uncertainty
 - improve pion β decay and extraction of V_{us} / V_{ud}