Opportunities for Missing Momentum Experiments

Nikita Blinov

November 5, 2020

DND 2020, TRIUMF

Dark Matter

Well-established ingredient of standard cosmology, but we only know that

1) It does not interact much with SM

2) It behaves like a stable, non-relativistic particle in the cosmos

3) It makes up $\sim 1/6$ of the energy budget of the universe

Thinking about achieving this relic abundance identifies search techniques and testable milestones

Thermal Origin of Dark Matter

Suppose DM interacts with SM particles

Correct abundance if

$$\langle \sigma v \rangle \approx \left(\frac{1}{20 \text{ TeV}} \right)^2$$

3

similar to Higgs production @ LHC

Thermal Origin of Dark Matter

Suppose DM interacts with SM particles

similar to Higgs production @ LHC

4

Thermal Origin of Dark Matter

Suppose DM interacts with SM particles

Advantage 1: Predictions for Experiments

Advantage 2: Reduced Parameter Range

Significantly smaller mass range for viable models

Advantage 2: Reduced Parameter Range

Significantly smaller mass range for viable models

Familiar energy scales, independence of initial conditions

$$\left<\sigma v\right>\approx \left(\frac{1}{20~{\rm TeV}}\right)^2\sim \frac{y}{m_\chi^2} \underbrace{\qquad }_{\rm DM\ mass}^{\rm Dimensionless\ product}$$

This talk: focus on DM lighter than a GeV

Dark Sectors

For light DM (< GeV), SM interactions insufficient

Light thermal DM must be SM-neutral, requires a new mediator

How can such particles interact with familiar matter?

Annihilation Channels

A large but finite set of freeze-out channels possible

Available final states: ν, γ, ℓ, q

Theoretical Considerations: Only a few *lowdimensional*, *gauge-invariant* connections to BSM

Annihilation Channels

A large but finite set of freeze-out channels possible Available final states: ν , γ , ℓ , qTheoretical Considerations: Only a few *low*-

dimensional, gauge-invariant connections to BSM

 $\begin{array}{lll} A'_{\mu}J^{\mu}_{\mathrm{SM}} & \operatorname{Dark}\,\operatorname{vectors}\,\Rightarrow\,\operatorname{Coupling}\,\operatorname{to}\,\operatorname{conserved}\,\operatorname{currents}\\ |H|^{2}\phi^{2} & \operatorname{Higgs}\,\operatorname{portal}\,\operatorname{scalar}\,\Rightarrow\,\operatorname{Coupling}\,\operatorname{to}\,\operatorname{fermions}\\ LHN_{R} & \operatorname{Right-handed}\,\operatorname{neutrino}\Rightarrow\,\operatorname{Coupling}\,\operatorname{to}\,\operatorname{neutrinos}\\ aF_{\mu\nu}\widetilde{F}^{\mu\nu} & \operatorname{Pseudo-scalar}\,\Rightarrow\,\operatorname{Coupling}\,\operatorname{to}\,\operatorname{electromagnetism}_{11}\\ & & \operatorname{Pospelov},\,\operatorname{Ritz}\,\operatorname{and}\,\operatorname{Voloshin}\,'07{++}\end{array}$

Annihilation Channels

A large but finite set of freeze-out channels possible **Available final states**: ν, γ, ℓ, q

Theoretical Considerations: Only a few *lowdimensional, gauge-invariant* connections to BSM

$A_{\mu}^{\prime}J_{ m SM}^{\mu}$	Dark vectors \Rightarrow Coupling to conserved currents
$ H ^2 \phi^2$	Higgs portal scalar \Rightarrow Coupling to fermions
LHN_R	$Right extsf{-handed}$ $neutrino$ \Rightarrow $Coupling$ to neutrinos
$a F_{\mu u} \widetilde{F}^{\mu u}$	$Pseudo-scalar \Rightarrow Coupling to electromagnetism_{12}$
•	Pospelov, Ritz and Voloshin '07++

DM/Mediator Mass Hierarchy

For a specific model available annihilation channels depend on DM-mediator mass ordering

$$m_{A'} < m_{\chi}$$

Secluded Annihilation Only depends on "dark" couplings

DM/Mediator Mass Hierarchy

For a specific model available annihilation channels depend on DM-mediator mass ordering

$$m_{A'} < m_\chi$$

Secluded Annihilation Only depends on "dark" couplings

Dark Photon Example

Dark matter coupled to the dark photon can annihilate directly into SM particles

Dark Photon Example

Dark matter coupled to the dark photon can annihilate directly into SM particles

Thermal freeze-out identifies specific, within-reach target

Variations on a Theme

• Other DM options:

Scalar, Majorana or Dirac Asymmetric, inelastic, SIMPs,..

• Other mediators

B-L, L_e-L_{mu},... Scalar, pseudoscalar, ...

Berlin, NB, Gori, Schuster & Toro '18 Berlin, NB, Krnjaic, Schuster & Toro '19

Qualitatively similar targets in a wide variety of other models

Variations on a Theme

• Other DM options:

Scalar, Majorana or Dirac Asymmetric, inelastic, SIMPs,...

• Other mediators

B-L, L_e-L_{mu},... Scalar, pseudoscalar, ...

Berlin, NB, Gori, Schuster & Toro '18 Berlin, NB, Krnjaic, Schuster & Toro '19

Qualitatively similar targets in a wide variety of other models

A Search Strategy

1) Relic abundance fixes y as a function of m_{χ}

$$y = \frac{\epsilon^2 \alpha \alpha_D m_{\chi}^4}{m_{A'}^4} \sim 10^{-13} \left(\frac{\text{MeV}}{m_{\chi}}\right)^2$$

2) Experimental constraints suggest $\epsilon^2 \alpha \ll \alpha_D$

 $\therefore \text{ For } m_{\text{A}'} {>} 2m_{\chi}$

$\Gamma(A' \to \chi \chi) \gg \Gamma(A' \to \text{SM SM})$

Mediator decays invisibly in predictive thermal models Look for missing energy/momentum!

Detect DM indirectly by observing recoiling SM particle. Background

Detect DM indirectly by observing recoiling SM particle. Background

Detect DM indirectly by observing recoiling SM particle. Background

Detect DM indirectly by observing recoiling SM particle. Background

Beam Requirements

1) Need to track each incident beam particle

low current

2) High statistics on a ~year time scale (>10¹⁴ EOT) single/few electrons @ > 30 MHz repetition rate

Candidate beams:

- S30XL@SLAC SLAC-R-1147; must be parasitic to freeelectron laser program
- CEBAF@JLAB primarily a nuclear physics facility
- eSPS@CERN CERN-SPSC-2018-023 hypothetical

Signal Kinematics

LDMX Collaboration (1808.05219) '18

Backgrounds

LDMX Collaboration '19

Light Dark Matter eXperiment

Fermilab SLAC UCSB UNIVERSITY OF

- Detector design developed by the LDMX collaboration, using technology from CMS, Mu2e and HPS experiments
 - LDMX Collaboration (1808.05219) '18

💼 UNIVERSITY of VIRGINIA 🖲

 Background studies using realistic detector simulation show the design achieves the necessary background rejection for 10¹⁴ EOT LDMX Collaboration (1912.05535) '19

Caltech

Lund

LDMX Projections

Phase 1: $\sim 10^{14}$ EOT, 4 GeV e Beam Phase 2: $\sim 10^{16}$ EOT, 8 GeV e Beam

LDMX+Belle II can decisively test thermal DM below a GeV!

Missing Momentum/Energy/Mass

$$m_{A'}^2 = (p_{e^+} + p_{e^-} - p_\gamma)^2$$

ARIEL Beam

Much of previous discussion translates to ~50 MeV electron beam

Possible Reach

50 MeV electron beam, 10^{16} EOT on $0.1X_0$ Tungsten

Challenge 1: nominal ARIEL current probably too high (pileup) Challenge 2: lower energy, more wide-angle/lost emissions (background)?

Cosmology and Dark Sectors Near MeV

• In thermal models at early times $\rho_{\rm DS}\sim\rho_{\gamma}\sim T^4$

DM+associated particles

If DS lighter than a few MeV

 $\begin{array}{ll} \mbox{Faster expansion} & \mbox{Different baryon abun.} \\ H(T) \propto \sqrt{\rho_{\rm SM} + \rho_{\rm DS}} & \eta_b = \frac{n_b}{n_\gamma} \end{array}$

 $m_{\chi} \; [\text{MeV}]$

Cosmology and Dark Sectors Near MeV

- In thermal models at early times $\rho_{\rm DS}\sim\rho_{\gamma}\sim T^4$

DM+associated particles

If DS lighter than a few MeV

 $\begin{array}{ll} \mbox{Faster expansion} & \mbox{Different baryon abun.} \\ H(T) \propto \sqrt{\rho_{\rm SM} + \rho_{\rm DS}} & \eta_b = \frac{n_b}{n_\gamma} & \mbox{See} \end{array}$

Cosmology and Dark Sectors Near MeV

0.27

0.26

0.25

0.24

 $0.23 \ 10^{-2}$

 Y_p

 $^4\mathrm{He}$ Yield for Nu-Coupled Real Scalar DM

 m_{χ} [MeV]

 10^{0}

 10^{1}

 10^{-1}

• In thermal models at early times $\rho_{\rm DS}\sim\rho_{\gamma}\sim T^4$

DM+associated particles

 If DS lighter than a few MeV

 $\begin{array}{ll} \mbox{MeV} & \mbox{Wrong predictions for} \\ \mbox{Faster expansion} & \mbox{Different baryon abun.} & \mbox{4He, D} \\ \mbox{} H(T) \propto \sqrt{\rho_{\rm SM} + \rho_{\rm DS}} & \mbox{$\eta_b = \frac{n_b}{n_\gamma}$} & \mbox{abundances, CMB!} \\ \mbox{See, e.g., 1910.01649 (Sabti et al '19)} \\ \mbox{Cosmology constrains (BBN+CMB)} \\ \mbox{$m_{A'} \gtrsim 10 $ MeV$} & \mbox{$m_\chi \gtrsim 5 $ MeV$} \end{array}$

Viable Parameter Space

• Challenge 3: Large range of accessible parameter space in tension with cosmology

Outlook

 Cosmological production of DM can identify "preferred" regions in DM mass and coupling

• Theoretical principles and SM spectrum further constrain possible interactions and signals

 Missing energy/mass/momentum experiments with few-GeV lepton beams poised to decisively test well-motivated models Thank you!

Appendix

Advantages of Accelerator Searches

SuperCDMS SNOLAB

Direct detection strongly sensitive to possible DM velocity dependence in scattering rates:

Challenging to cover all thermal targets!

Advantages of Accelerator Searches

Thermal DM Caveats

Not all models of thermal DM predict SM coupling as a function of DM mass. Examples include

 Secluded DM: DM mass < mediator mass. No target SM coupling because abundance determined by DS interactions alone

Examples include 1812.05103 (Batell et al '18)

2) Resonant annihilation: if mediators mass close to twice the DM mass, tiny SM couplings can still lead to correct abundance

See, e.g., 1707.03835 (Feng and Smolinksy '17)

Thermal Dark Matter

DM particles were in kinetic and chemical equilibrium with the SM at early times:

Thermal Dark Matter

DM particles were in kinetic and chemical equilibrium with the SM at early times:

 10^{3}

Thermal Dark Matter

DM particles were in kinetic and chemical equilibrium with the SM at early times:

 $n_{\chi} = \int \frac{d^{3}p}{(2\pi)^{3}} e^{-(E - \mu)/T_{SM}}$

Advantages of thermal DM

1) Insensitive to UV/initial conditions

2) Interactions with SM required

3) Finite mass range

Thermal-ish Dark Matter

 DM particles were in kinetic but not chemical equilibrium with the SM
 Hochberg et al '14

 $T_{\chi}=T_{SM}$

Only DM-number-changing process

Thermal-ish Dark Matter

 DM particles were in kinetic but not chemical equilibrium with the SM
 Hochberg et al '14

 $T_{\chi} = T_{SM}$

Only DM-number-changing process

Thermal-ish Dark Matter

 DM particles were in kinetic but not chemical equilibrium with the SM
 Hochberg et al '14

 $T_{\chi} = T_{SM}$

Only DM-number-changing process

DM abundance determined by DS dynamics, but **requires** kinetic equilibrium with SM

Confining Dark Sectors

QCD-like models naturally realize $3 \rightarrow 2$ freeze-out via

1411.3727 (Hochberg *et al* '15)++

48

Kinetic equilibrium with SM required to avoid DM overproduction. Many ways (interactions) to do this: **dark photons, ALPs, Higgs portal,...** Hochberg, Kuflik & Murayama '15 Berlin, NB, Gori, Schuster & Toro '18 Katz, Salvioni & Shakya '20 Hochberg *et al '18*

Kinetic Equilibrium With ALPs

Requiring that this is rapid enough gives lower bound on $f_{a\gamma}^{-1}$

Kinetic Equilibrium With ALPs

Requiring that this is rapid enough gives **lower** bound on $f_{a\gamma}^{-1}$

Non-Thermal Dark Matter

DM particles were *never* in kinetic or chemical equilibrium with the SM

$$n_{\chi} = \int \frac{d^3p}{(2\pi)^3} f_{\chi}(E)$$

Dodelson & Widrow '93; Hall et al '09

Example 1: Freeze-in With a Massive A'

Freeze-in typically requires tiny couplings

Accelerator-accessible signals possible if

 $\alpha_D \lll 1$

Visible and invisible mediator decays

$$\epsilon^2 \alpha_D \sim 10^{-22} \left(\frac{m_{A'}}{m_{\chi}} \right)$$

Berlin, NB, Krnjaic, Schuster & Toro '18

Low–Reheat Freeze–In, $m_{A^\prime}~=15~T_{\rm RH},~m_{\chi}=10~{\rm keV}$

Example 1: Freeze-in With a Massive A'

Freeze-in typically requires tiny couplings

Accelerator-accessible signals possible if

 $\alpha_D \lll 1$

Visible and invisible mediator decays

$$\epsilon^2 \alpha_D \sim 10^{-22} \left(\frac{m_{A'}}{m_{\chi}} \right)$$

Berlin, NB, Krnjaic, Schuster & Toro '18

Low–Reheat Freeze–In, $m_{A^\prime}~=15~T_{\rm RH},~m_{\chi}=10~{\rm keV}$

Detecting a DM Beam: Beam Dump Searches

Only a small fraction $\sim y$ of DM detected. Can we do better?

Detecting a DM Beam: Beam Dump Searches

DeNiverville, Pospelov, Ritz '12; MiniBooNE-DM '18

Signal Yield $\sim y^2 \times N_{\rm POT}$

Only a small fraction $\sim y$ of DM detected. Can we do better?

Indirect Searches

Look for annihilation products today: but CMB bounds preclude an indirect detection signal

If residual annihilation continue after recombination: ionize neutral hydrogen and distort the CMB!

E.g. 100 MeV DM particle annihilating to electrons has enough energy to dissociate 10^7 H atoms!

Late-time annihilations must be suppressed – no indirect detection signal

Photon Diffusion Damping

Precise measurements at large ℓ preclude large modifications to r_d relative to r_s

Light Dark Sectors and BBN

Beyond Dark Photons: New Gauge Bosons

Many theoretically consistent extensions of SM have couplings to **electrons** and **neutrinos**:

New force carriers Z' of $U(1)_{B-L}$, $U(1)_{B-3L_i}$, $U(1)_{L_i-L_j}$, ...

Missing Momentum w/o Dark Matter!

