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Lepton Universality
• The standard model assumes 

equal electroweak couplings of 
the three lepton generations
• Q=1 : e, μ, τ
• Q=0 : νe, νμ, ντ
• ge = gμ = gτ
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Lepton Flavor Universality
• Tested in many different decays

• Studied in high-precision measurements of π, K, τ, B, and W decays
• Not generally true in SM extensions

• Any significant observation of LFU violation is a sign of New Physics
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RK(*)

• Hints of possible violation of e-μ universality in B+ → K+l+l- decays?
• RK(*) = BR(B → K(*)μ+μ-)/BR(B → K(*)e+e-) show deviations from SM by ~ 2.5σ

•
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RD(*)

• R(D*) may also indicate the 
possible deviation from SM

• Lepton universality test with τ and 
e/μ

• Recent Belle data shows closer to 
SM…but there is a tension with SM 
at the 3σ level
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Lepton flavor universality study with π
• Re/μ = Γ[π→eν(γ)] / Γ[π→μν(γ)] 

• Calculated in the SM with extraordinary 
precision to be RSMe/μ = 1.2352±0.0002)×10-4

• Latest experimental values Rexpe/μ = 
(1.2344±0.0023(stat)±0.0019(syst))×10-4 

(PIENU)

• Sensitivity to new physics beyond the SM up 
to mass scales of O(500) TeV

• Examples of new physics : R-parity violating 
supersymmetry, extra leptons, leptoquarks

• Future PIENU/PEN will reach < 0.1% 
• Any room for further improvement 

by the MEG II liquid xenon 
detector?
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MEG II experiment



MEG II Motivation (1)
• Charged Lepton Flavor Violation (CLFV) search

• Flavor violation phenomena already observed in quarks (CKM 
matrix) and neutral lepton (neutrino oscillation)

• However, charged lepton flavor violation has never been 
observed. We don’t know the reason yet.

• μ→eγ decay
• Suitable mode to look for CLFV decay
• In standard model with neutrino oscillation, the calculated 

branching ratio Br(μ→eγ) ~ 10-54

• no standard model background
• An observation of CLFV is clear evidence of new physics
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MEG II motivation (2)
• Many new physics theories such as SUSY-

GUT/SUSY-seesaw predict large CLFV 
• CLFV decay can be enhanced by new particles in loop
• The experimental sensitivity already reaches the new physics 

prediction region, and we have chances for the discovery

• Many new experiments will start soon
• μ→eγ at PSI (MEG II)
• μ→eee at PSI (Mu3e)
• μN→eN at J-PARC (COMET), at FermiLab (Mu2e)
• Complementary to pin down the new physics behind
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πE5 area
MEG II, Mu3e

UCN
n2EDM Proton therapy

Neutron spallation

Target E

Target M

Proton accelerator

PSI DC muon beam
• Paul Scherrer Institute in Switzerland

• 590 MeV 2.4mA proton ring cyclotron
• World most intense DC muon beam > 108 μ/s
• 50 MHz RF time structure << μ lifetime ~ 2μs

• No time structure in muon decay (continuous)
• Surface muon beam ~ 29 MeV/c
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μ→eγ signal and background

• Lower instantaneous muon beam rate (DC muon beam)
• Better detector resolutions
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Eγ,Ee ≃ 52.8MeV
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MEG II Experiment
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Positron 
(e+) 

Gamma-ray (γ) Muon (µ+) 

Downstream Upstream 

900 l Liquid Xenon γ Detector

Radiative Decay  
 Counter

Cylindrical Drift 
Chamber

COBRA SC Magnet

Pixelated Positron 
Timing Counter

7x107/s 
(×2.3 higher rate)

30ps resolution w/ 
multiple hits

Single volume  
small stereo cells

more hits

Further reduction
of radiative BG

Better uniformity
w/ VUV-sensitive

12x12mm2 4092 SiPM
+ 668 PMTs

×2 resolution 
everywhere



Sensitivity

• Data for a few months exceed the 
current limit, and reach 6x10-14 in 
three years

• Engineering run followed by physics 
run from 2021
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Resolution MEG MEG II
Ee+ (keV) 380 130
θe+ (mrad) 9.4 5.3
φe+ (mrad) 8.7 3.7

ze+/ye+ (mm) core 2.4/1.2 1.6/0.7
Eγ(%) (w>2cm/<2cm) 1.7/2.4 1.0/1.1

uγ, vγ, wγ (mm) 5/5/6 2.6/2.2/5
teγ (ps) 122 84

Efficiency (%)
Trigger 99 99

γ 63 69
e+ (tracking × matching) 30 70 6x10-14
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MEG II Liquid Xenon 
Detector



MEG II Liquid Xenon Detector 
• Position, timing, energy measurements of 52.8 MeV γ 

from μ→eγ decay
• C-shape to fit the cylindrical shape of the superconducting magnets 
• Thin entrance window for γ (honeycomb structure) : 0.075X0

• 66 cm (horizontal) × 140 cm (arc)
• Vacuum vessel to keep LXe at 165K

• Detector medium : 900 l LXe 
• Homogeneous 
• Heavy (3 g/cm3)
• High light yield
• decay time : 45ns (γ)
• Depth 38.5cm (~13X0)

• Scintillation readout : 4092 MPPC  
(15×15mm2) + 668 PMTs (51mmφ)
• immersed in LXe (0.029X0 from MPPC)
• Sensitive to VUV-light (175nm)
• Operational at 165K
• All the waveforms are recorded by WaveDREAM (DRS4)
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The LXe detector commissioning
• Energy, position, timing 

resolutions are begin evaluated
• The resolutions near the signal 

region will be evaluated by π-p → 
π0n, π0→2γ run in this November

• Full electronics ready early next 
year, and start engineering run in 
2021.

• Three years physics run is 
planned after that.
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New idea for LFUV 
measurement



π+

π+ μ+

e+ 
69.8MeV

e+ 
0.5-52.8 MeV

50cmφ x 50cm

Sullivan TRISTAN

Depth ~ 20 X0
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Dinko POCANIC

Acceptance
~3π

Depth ~ 12X0

:10-50 kHZ

6%(FWHM)



Items for improvements
• Goal

• To reach the same sensitivity as the theory ~ 0.01%
• Statistics 

• 1-2 orders of magnitude improvement necessary
• PIENU, PEN : 107 π+→e+ν collected

• Increase the beam intensity, acceptance
• Several 104 π+/s → > several 105 π+/s
• Target region as close as possible in front of calorimeter, large calorimeter

• Systematics
• One order of magnitude improvement necessary
• complete containment of EM showers 
• Highly uniform response, depth of the total absorption LXe calorimeter
• Determination of the “tail” region-of-interest (photo-nuclear radiative effects)
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MEG II LXe detector for LFUV experiment
• Quick realization

• No need for R&D time, no extra cost
• Right after the MEG II finishes, we can start (or even some studies are possible from now on)

• High performance
• Fast response (decay time 45ns) → high rate is possible (>105 π+/s)
• Homogeneous detector 
• Large entrance window

• 69.3 MeV e+ simulation  
into the LXe detector  
(we are setting up…)
• We need to check the energy  

response, acceptance, etc.
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What we want to check with simulation
• LXe detector response to 69.8MeV e+, 

0.5-52.8MeV e+

• Positron beam into the center of the LXe detector
• If we use Mott scattering events, we may be able to 

demonstrate it with data (Material from Magnets ~ 0.197X0)
• LXe detector acceptance for positron detection

• Detection efficiency for isotropically distributed e+ generated 
at the target

• Maximum event rates
• Energy spectra with pileups at different beam rates
• Any other constraints?

• Beam test with large prototype or directly with 
the LXe detector?
• Test of the photo nuclear effect with LXe by monochromatic 

Mott scattering events
• Optimization of the detectors around the target 

• π+, μ+, e+ tracking, particle identification 
• Compact, close to the LXe detector
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Mott monochromatic energy spectrum

Ee+ = 51.8 MeV
σE = 412 keV

Momentum center 
can be tuned

Input Ee+ = 69.3 MeV
deposit = 55 MeV
σE = 1.25MeV(2%)

Energy loss at Magnets, 
we can tune the positron 

momentum to 83MeV. 
Still feasible for the 

detector understanding



Photo-nuclear reaction
• Photonuclear reactions

• 127I captures γ(electromagnetic shower) → 
n(94%), p(4%), α(2%) emission → 1n, or 2n 
escape from NaI → peaks in low energy region

• This energy region is buried in a large amount of 
π→μ→e decays, and the detailed spectrum is 
necessary in advance

• Beam test was performed with positron 
beam into NaI

• Geant4 simulation should be tuned to 
reproduce the data.

• We want to test it with LXe, too with the 
LXe detector or large prototype (~100l 
LXe)
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This is the ideal case, 
but we can start many studies with the MEG II LXe detector 

SNOWMASS21-RF2_RF3-048
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Summary
• The MEG II experiment will look for new physics beyond the standard 

model by studying the μ+→e+γ decay in about three years from 2021.
• The 900 l liquid xenon detector is used for the γ detection.

• We started investigating if the MEG II liquid xenon detector can be utilized 
for lepton flavor universality violation search to precisely measure the ratio 
of R = (π+→e+ν) / (π+→μ+ν)

• We will estimate which sensitivity can be reached by the existing the MEG 
II liquid xenon detector by using the simulation and the real data.

• If you have any good idea to be tested even in this MEG II configuration, 
please let me know.
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https://s3.cern.ch/inspire-prod-files-e/ee196c6df1926b10719b9267edf15604
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This study
• Limitation of the previous experiments

• Statistic uncertainty
• Systematic uncertainty

• Spectrum shape at low energy region due to shower leakage of NaI/CsI
• replace NaI/CsI with LXe for positron detection

• Possible to reduce shower leakage?
• Comparable energy resolution
• Large & uniform positron detector (66 cm × 140 cm × 38.5 cm)

• 48 cm diameter × 48 cm depth NaI (PIENU)
• Goal

• Data statistics 107 (π+ → e+ν) events → 109 events
• Acceptance 20%→50%
• Data taking 100 days → 365 days
• Beam rate 7x104/s → 3x105/s

• The well understood detector already exists, and quick start is possible
• Large volume with uniformity, less systematics

• Smaller systematic uncertainty with beam test for photonuclear effects (with large statistics)
• In total, we will aim at 0.01% uncertainty comparable to the theory uncertainty
• A full experimental design in four years
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