Recent advances in β decay and possible future avenues

Leendert Hayen DND Meeting, Nov 5th 2020

NC State & TUNL, USA

Introduction

CKM unitarity

Radiative corrections

Neutron and nuclear tests

Exotic current searches

Outlook & summary

Introduction

CKM unitarity

Radiative corrections

Neutron and nuclear tests

Exotic current searches

Outlook & summary

18-26 free parameters

18-26 free parameters

Great (annoyingly so), consistent with constraints at $\sim 10^{0-2}~\text{TeV}$

18-26 free parameters

Great (annoyingly so), consistent with constraints at $\sim 10^{0-2}~\text{TeV}$

Open questions: dark matter, gravity, neutrino masses, ...

SM tests @ low energy: non-perturbative QCD very difficult \rightarrow predominantly electroweak

SM tests @ low energy: non-perturbative QCD very difficult \rightarrow predominantly electroweak

Besides precision QED $(a_{e,\mu}, r_p, \ldots)$, weak interactions probe

- (C)P violation
- Lorentz structure
- CKM unitarity

SM tests @ low energy: non-perturbative QCD very difficult \rightarrow predominantly <code>electroweak</code>

Besides precision QED $(a_{e,\mu}, r_p, \ldots)$, weak interactions probe

- (C)P violation
- Lorentz structure
- CKM unitarity

All of these can be probed using (nuclear) β decay

SM tests @ low energy: non-perturbative QCD very difficult \rightarrow predominantly <code>electroweak</code>

Besides precision QED $(a_{e,\mu}, r_p, \ldots)$, weak interactions probe

- (C)P violation
- Lorentz structure Today
- CKM unitarity Today

All of these can be probed using (nuclear) β decay

Introduction: β decay

Advantages

- Typical β decay scale $\ll M_W$
- \rightarrow V-A 4-point tree level + QCD + QED
- \rightarrow Constant renormalization of coupling constants

Nuclear chart sandbox

Introduction: β decay

Advantages

- Typical β decay scale $\ll M_W$
- \rightarrow V-A 4-point tree level + QCD + QED
- \rightarrow Constant renormalization of coupling constants

Nuclear chart sandbox

Challenges

Strong many-body physics

High precision requires quark \rightarrow nucleus \rightarrow atom corrections

Workshops

Lots of activity following 3 timely workshops

- Nov 2018: ACFI UMass
- April 2019: ECT* Trento
- Nov 2019: INT @ UW

Introduction

CKM unitarity

Radiative corrections

Neutron and nuclear tests

Exotic current searches

Outlook & summary

Cabibbo-Kobayashi-Maskawa matrix relates weak and mass eigenstates

$$\left(\begin{array}{c} d\\s\\b\end{array}\right)_{w} = \left(\begin{array}{ccc} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb}\end{array}\right) \left(\begin{array}{c} d\\s\\b\end{array}\right)_{m}$$

Cabibbo-Kobayashi-Maskawa matrix relates weak and mass eigenstates

$$\left(\begin{array}{c} d\\s\\b\end{array}\right)_{w} = \left(\begin{array}{ccc} V_{ud} & V_{us} & V_{ub}\\ V_{cd} & V_{cs} & V_{cb}\\ V_{td} & V_{ts} & V_{tb}\end{array}\right) \left(\begin{array}{c} d\\s\\b\end{array}\right)_{m}$$

Unitarity requires

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

Cabibbo-Kobayashi-Maskawa matrix relates weak and mass eigenstates

$$\left(\begin{array}{c} d\\s\\b\end{array}\right)_{w} = \left(\begin{array}{ccc} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb}\end{array}\right) \left(\begin{array}{c} d\\s\\b\end{array}\right)_{m}$$

Unitarity requires

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

(nuclear) eta decay, meson decay (π , K), $|V_{ub}|^2 \sim 10^{-5}$

CKM unitarity: 2001-2017

Quite some movement over the years...

Thanks to Albert Young

CKM unitarity: 2018-2020

Quite some movement over the years...

Thanks to Albert Young

The plot thickens: disagreement between Kl2 and Kl3 $|V_{us}|$ 'Cabibbo angle anomaly'

•
$$|V_{us}| = 0.2234(8) \ (K \to \pi I \nu)$$

•
$$|V_{us}| = 0.2253(4) \ (K^{\pm} \to I^{\pm}\nu)$$

Early signs of new physics? Lattice QCD artifacts? Time will tell

Czarnecki, Marciano, Sirlin PRD 101 (2020) 019301

Introduction

CKM unitarity

Radiative corrections

Neutron and nuclear tests

Exotic current searches

Outlook & summary

Radiative corrections can (\sim) be separated into

- 1. Energy-dependent, QCD-*in*dependent part: δ_R
- 2. Energy-*in*dependent, QCD-dependent part: Δ_R

Radiative corrections can (\sim) be separated into

- 1. Energy-dependent, QCD-*in*dependent part: δ_R
- 2. Energy-*in*dependent, QCD-dependent part: Δ_R

 δ_R sufficiently known. Δ_R depends on

vertex correction, box diagrams, \sim penguin

+ others. Generally well-understood from current algebra & pQCD

Everything OK except (in)famous axial contribution in γW box

$$\Box_{\gamma W}^{VA} = \frac{\alpha}{8\pi} \int_0^\infty dQ^2 \frac{M_W^2}{Q^2 + M_W^2} F(Q^2)$$

sensitive everywhere $Q^2 \rightarrow 0$ (IR), $Q^2 \sim M_n^2$ (Nuclear + inelastic), $Q^2 \gtrsim M_W^2$ (UV + pQCD)

Everything OK except (in)famous axial contribution in γW box

$$\Box_{\gamma W}^{VA} = \frac{\alpha}{8\pi} \int_0^\infty dQ^2 \frac{M_W^2}{Q^2 + M_W^2} F(Q^2)$$

sensitive everywhere $Q^2 \rightarrow 0$ (IR), $Q^2 \sim M_n^2$ (Nuclear + inelastic), $Q^2 \gtrsim M_W^2$ (UV + pQCD)

2006: Marciano & Sirlin $\Delta_R^V = 0.02361(38)$, but heuristic uncertainty from 'intermediate' energy scale

2018: Seng, Gorchtein, Patel, Ramsey-Musolf $\Delta_R^V = 0.02467(22)$ 4 σ shift

Seng, Gorchtein, Ramsey-Musolf PRD 100 (2019) 013001

Change in Δ_R^V corresponds to change in $|V_{ud}|$ $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9994(5) \rightarrow 0.9984(4)$

Change in Δ_R^V corresponds to change in $|V_{ud}|$ $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9994(5) \rightarrow 0.9984(4)$

4 σ unitarity violation? Nuclear theory error? V_{us} ?

Change in Δ_R^V corresponds to change in $|V_{ud}|$ $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9994(5) \rightarrow 0.9984(4)$

4 σ unitarity violation? Nuclear theory error? V_{us} ?

Additional quasi/inelastic nuclear structure should be included

 $0.9984(4) \to 0.9989(5) \to 0.9984(6)$

AF, MG-A, ON-C, 2010.13797

Change in Δ_R^V corresponds to change in $|V_{ud}|$ $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9994(5) \rightarrow 0.9984(4)$

4 σ unitarity violation? Nuclear theory error? V_{us} ?

Additional quasi/inelastic nuclear structure should be included

$$0.9984(4)
ightarrow 0.9989(5)
ightarrow 0.9984(6)$$

You win some, ...

Gorchtein, PRL 123 (2019) 042503

AF, MG-A, ON-C, 2010.13797

So far only Δ_R^V was calculated, what about Δ_R^A

$$g_A^{\exp} = g_A \left[1 + \frac{1}{2} (\Delta_R^A - \Delta_R^V) + \delta_{BSM} \right]$$

 $\mathsf{NC}{\leftrightarrow}\mathsf{CC}$ and comparison to lattice QCD for right-handed currents

So far only Δ_R^V was calculated, what about Δ_R^A

$$g_A^{\exp} = g_A \left[1 + rac{1}{2} (\Delta_R^A - \Delta_R^V) + \delta_{BSM}
ight]$$

 $\mathsf{NC}{\leftrightarrow}\mathsf{CC}$ and comparison to lattice QCD for right-handed currents

New calculation

- $\Delta_R^A = 0.02881(30)$
- $\Delta_R^V = 0.02474(31)$
- $\Delta_R^A \Delta_R^V = 4.07(8) \times 10^{-3}$

LH, 2010.07262

So far only Δ_R^V was calculated, what about Δ_R^A

$$g_A^{\exp} = g_A \left[1 + rac{1}{2} (\Delta_R^A - \Delta_R^V) + \delta_{BSM}
ight]$$

 $\mathsf{NC}{\leftrightarrow}\mathsf{CC}$ and comparison to lattice QCD for right-handed currents

New calculation

- $\Delta_R^A = 0.02881(30)$
- $\Delta_R^V = 0.02474(31)$
- $\Delta_R^{\mathcal{A}} \Delta_R^{\mathcal{V}} = 4.07(8) \times 10^{-3}$

Much larger than usually assumed ($\lesssim 0.1\%)!$

LH, 2010.07262

Role of LQCD

Lattice QCD starts being used for $\gamma \textit{W}\text{,}$ but QCD + QED very hard for baryons

Role of LQCD

Lattice QCD starts being used for $\gamma \textit{W},$ but QCD + QED very hard for baryons

Seng et al., PRD 101 111301

Use pions & relate to nucleon

Role of LQCD

Lattice QCD starts being used for $\gamma \textit{W},$ but QCD + QED very hard for baryons

Seng et al., PRD 101 111301

Use pions & relate to nucleon

Efforts underway for $\Delta_R^A + \Delta_R^V$ from χPT & LQCD
Introduction

CKM unitarity

Radiative corrections

Neutron and nuclear tests

Exotic current searches

Outlook & summary

CKM unitarity: V_{ud}

Get $|V_{ud}|$ from 'corrected' ft value

$$\mathcal{F}t \equiv f_V t_{1/2} M_F^2 (1+\delta_R) (1+\text{stuff}) = \frac{K}{G_F^2 |V_{ud}|^2 (1+\Delta_R^V)}$$

All relevant β transitions have same RHS

CKM unitarity: V_{ud}

Get $|V_{ud}|$ from 'corrected' ft value

$$\mathcal{F}t \equiv f_V t_{1/2} M_F^2 (1+\delta_R) (1+\text{stuff}) = \frac{K}{G_F^2 |V_{ud}|^2 (1+\Delta_R^V)}$$

All relevant β transitions have same RHS

Nuclear sandbox \rightarrow make $M_F^2(1 + \text{stuff})$ easy

- Neutron
- Superallowed $0^+ \rightarrow 0^+$
- T = 1/2 mirrors

CKM unitarity: V_{ud}

Get $|V_{ud}|$ from 'corrected' ft value

$$\mathcal{F}t \equiv f_V t_{1/2} M_F^2 (1+\delta_R) (1+\text{stuff}) = \frac{K}{G_F^2 |V_{ud}|^2 (1+\Delta_R^V)}$$

All relevant β transitions have same RHS

Nuclear sandbox \rightarrow make $M_F^2(1 + \text{stuff})$ easy

- Neutron
- Superallowed $0^+ \rightarrow 0^+$
- T = 1/2 mirrors

Fermi matrix element known from isospin symmetry

 \rightarrow small corrections (+ GT/F from correlation measurement)

Status early 2019

The neutron

Neutron is theoretically cleanest system

The neutron

Neutron is theoretically cleanest system

Experimentally, need to know

- Q_β 🗸
- Branching ratio \checkmark
- $\lambda = g_A/g_V$
- *t*_{1/2}

The neutron

Neutron is theoretically cleanest system

Experimentally, need to know

- Q_β 🗸
- Branching ratio \checkmark
- $\lambda = g_A/g_V$
- *t*_{1/2}

The neutron: λ

Evolution of $\lambda = g_A/g_V$

Tension between PERKEO3 and aSPECT, both 2019

The neutron: τ_n

Evolution of τ_n

Bottle: Count survivors; Beam: Count decay products

Essential physics ingredient: Big Bang Nucleosynthesis, solar physics, reactor anomaly, ...

The neutron: τ_n

Essential physics ingredient: Big Bang Nucleosynthesis, solar physics, reactor anomaly, ...

Current US based efforts mainly UCN τ @ LANSCE (bottle) & BL2/3 @ NIST (beam)

Several R&D efforts to combine (UCNProbe, HOPE, ...)

Pure Fermi transitions, $M_F = \sqrt{2}$ $f_V t (1+\delta_R)(1-\delta_C+\delta_{NS}) = \frac{K}{2G_F^2 V_{ud}^2 (1+\Delta_R^V)}$ Few small $\mathcal{O}(0.1\% - 2.5\%)$ corrections $\delta V_{ud} / V_{ud} \approx 0.04\%$

Towner & Hardy analysis; Plots by J. Hardy & D. Malconian

Pure Fermi transitions,
$$M_F = \sqrt{2}$$

 $f_V t(1+\delta_R)(1-\delta_C+\delta_{NS}) = \frac{K}{2G_F^2 V_{ud}^2(1+\Delta_R^V)}$
Few small $\mathcal{O}(0.1\% - 2\%)$ corrections
 $\delta V_{ud}/V_{ud} \approx 0.04\%$

Additional photonic corrections

Pure Fermi transitions,
$$M_F = \sqrt{2}$$

 $f_V t(1+\delta_R)(1-\delta_C+\delta_{NS}) = \frac{K}{2G_F^2 V_{ud}^2(1+\Delta_R^V)}$
Few small $\mathcal{O}(0.1\% - 2\%)$ corrections
 $\delta V_{ud}/V_{ud} \approx 0.04\%$

Nuclear effects in RC (2BC)

Pure Fermi transitions,
$$M_F = \sqrt{2}$$

 $f_V t(1+\delta_R)(1-\delta_C+\delta_{NS}) = \frac{K}{2G_F^2 V_{ud}^2(1+\Delta_R^V)}$
Few small $\mathcal{O}(0.1\% - 2\%)$ corrections
 $\delta V_{ud}/V_{ud} \approx 0.04\%$

Isospin breaking. How sure are we of δ_C ?

In this context: proton \neq neutron inside nucleus

 $\rightarrow M_F^2 = 2(1 - \delta_C)$

- Different radial wave function (Coulomb)
- Configuration interaction difference initial \leftrightarrow final

In this context: proton \neq neutron inside nucleus

 $\rightarrow M_F^2 = 2(1 - \delta_C)$

- Different radial wave function (Coulomb)
- Configuration interaction difference initial \leftrightarrow final

Compilations used Woods-Saxon potentials in shell model, but ab initio is maturing

 \rightarrow well-defined uncertainties & minimal data fitting

Nuclei with same 'core', initial and final state differ only in valence particle (e.g. ${}^{3}H \& {}^{3}He$, ${}^{15}O \& {}^{15}N$)

Nuclei with same 'core', initial and final state differ only in valence particle (e.g. ${}^{3}H \& {}^{3}He$, ${}^{15}O \& {}^{15}N$)

 $M_F = 1$, but mixed Fermi-Gamow-Teller decay

$$f_V t(1+\delta_R)(1-\delta_C+\delta_{NS})\left[1+rac{f_A}{f_V}
ho^2
ight]=rac{K}{G_F^2 V_{ud}^2(1+\Delta_R^V)}$$

 ρ must be determined independently from β correlation, $f_{\rm A}/f_V\sim 1$ from theory

Nuclei with same 'core', initial and final state differ only in valence particle (e.g. ${}^{3}H \& {}^{3}He$, ${}^{15}O \& {}^{15}N$)

 $M_F = 1$, but mixed Fermi-Gamow-Teller decay

$$f_V t(1+\delta_R)(1-\delta_C+\delta_{NS})\left[1+rac{f_A}{f_V}
ho^2
ight]=rac{K}{G_F^2 V_{ud}^2(1+\Delta_R^V)}$$

 ρ must be determined independently from β correlation, $f_{\rm A}/f_V\sim 1$ from theory

$$\frac{d\Gamma}{dE_e d\Omega_e d\Omega_\nu} \propto 1 + a_{\beta\nu} \frac{\vec{p_e} \cdot \vec{p_\nu}}{E_e E_\nu} + b_F \frac{m_e}{E_e} + A \frac{\vec{p_e}}{E_e} \langle \vec{I} \rangle + \dots$$

Current precision status for $f_V t(1 + \delta_R)(1 + \delta_{NS} - \delta_C)$

N. Severijns, LH et al., In preparation

For V_{ud} extraction ρ is typically bottleneck

Mixed transition causes cancellation \rightarrow enhanced sensitivity

Neutron and $^{19}\rm{Ne}$ have factor 5-13 enhancement for $\rho!$

LH, A. Young, 2009.11364

For V_{ud} extraction ρ is typically bottleneck

Mixed transition causes cancellation \rightarrow enhanced sensitivity

Neutron and 19 Ne have factor 5-13 enhancement for $\rho!$

Consistent formalism released (RC, nuclear, geometry), event generator (CRADLE++) in development

LH, A. Young, 2009.11364

Resolved double-counting in mirror *RC* significantly increases precision & agreement

 $|V_{ud}|^{\mathrm{mirror}} = 0.9710(12) \longrightarrow |V_{ud}|^{\mathrm{mirror}} = 0.9739(10)$

CKM unitarity: 2018-2020

To summarize

Thanks to Albert Young

Introduction

CKM unitarity

Radiative corrections

Neutron and nuclear tests

Exotic current searches

Outlook & summary

Standard Model has V-A structure, but more generally

$$\mathcal{L}_{\text{eff}} = -\frac{G_F \tilde{V}_{ud}}{\sqrt{2}} \left\{ \bar{e} \gamma_{\mu} \nu_L \cdot \bar{u} \gamma^{\mu} [1 - (1 - 2\epsilon_R) \gamma^5] d + \epsilon_S \bar{e} \nu_L \cdot \bar{u} d - \epsilon_P \bar{e} \nu_L \cdot \bar{u} \gamma^5 d + \epsilon_T \bar{e} \sigma_{\mu\nu} \nu_L \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma^5) d \right\} + \text{h.c.},$$

with

$$ilde{V}_{ud} = V_{ud}(1 + \epsilon_{L} + \epsilon_{R} - \delta G_{F}/G_{F})$$

Standard Model has V-A structure, but more generally

$$\mathcal{L}_{\text{eff}} = -\frac{G_F \tilde{V}_{ud}}{\sqrt{2}} \left\{ \bar{e} \gamma_{\mu} \nu_L \cdot \bar{u} \gamma^{\mu} [1 - (1 - 2\epsilon_R) \gamma^5] d + \epsilon_S \bar{e} \nu_L \cdot \bar{u} d - \epsilon_P \bar{e} \nu_L \cdot \bar{u} \gamma^5 d + \epsilon_T \bar{e} \sigma_{\mu\nu} \nu_L \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma^5) d \right\} + \text{h.c.},$$

with

$$ilde{V}_{ud} = V_{ud}(1 + \epsilon_{L} + \epsilon_{R} - \delta G_{F}/G_{F})$$

All ϵ_i are proportional to $(M_W/\Lambda_{BSM})^2$, change kinematics $\epsilon_i \lesssim 10^{-4} \rightarrow \Lambda_{BSM} \gtrsim 15$ TeV assuming natural couplings

Lattice QCD comparison

Comparison with LQCD is clean test for ϵ_R

$$g_A^{\exp} = g_A^{LQCD} \left[1 + \frac{1}{2} (\Delta_R^A - \Delta_R^V) \right] (1 - 2\operatorname{Re} \epsilon_R)$$

Lattice QCD comparison

Comparison with LQCD is clean test for ϵ_R

$$g_A^{\exp} = g_A^{LQCD} \left[1 + \frac{1}{2} (\Delta_R^A - \Delta_R^V) \right] (1 - 2\operatorname{Re} \epsilon_R)$$

FLAG19: $g_A = 1.251(33);$ Highest precision: $g_A = 1.2642(93)$

$$\begin{split} \Delta_R^A &- \Delta_R^V \\ \text{is } 2\sigma \text{ effect when} \\ g_A^{LQCD} \text{ reaches } 0.1\% \end{split}$$

LH, 2010.07262

New Lorentz structures change correlations

$$\frac{d\Gamma}{dE_e d\Omega_e d\Omega_\nu} \propto 1 + a_{\beta\nu} \frac{\vec{p_e} \cdot \vec{p_\nu}}{E_e E_\nu} + b_F \frac{m_e}{E_e} + A \frac{\vec{p_e}}{E_e} \langle \vec{I} \rangle + \dots$$

In practice,

measure effective correlations

$$ilde{X} = rac{X}{1+b_{\mathsf{F}}\langle rac{m_e}{E_e}
angle}$$

BSM sensitivity mainly from b_F

Interference term \rightarrow linear in exotic couplings

$$b_{F} = \pm 2\gamma \frac{1}{1+\rho^{2}} \operatorname{Re}\left\{\frac{g_{S}\epsilon_{S}}{g_{V}(1+\epsilon_{L}+\epsilon_{R})} + \rho^{2} \frac{4g_{T}\epsilon_{T}}{-g_{A}(1+\epsilon_{L}-\epsilon_{R})}\right\}$$

i.e. 0 in SM

Interference term \rightarrow linear in exotic couplings

$$b_F = \pm 2\gamma \frac{1}{1+\rho^2} \operatorname{Re}\left\{\frac{g_S \epsilon_S}{g_V (1+\epsilon_L + \epsilon_R)} + \rho^2 \frac{4g_T \epsilon_T}{-g_A (1+\epsilon_L - \epsilon_R)}\right\}$$

i.e. 0 in SM

Get $g_i = \langle p | dO_i \bar{u} | n \rangle \sim 1$ from LQCD

Interference term \rightarrow linear in exotic couplings

$$b_F = \pm 2\gamma \frac{1}{1+\rho^2} \operatorname{Re}\left\{\frac{g_S \epsilon_S}{g_V (1+\epsilon_L+\epsilon_R)} + \rho^2 \frac{4g_T \epsilon_T}{-g_A (1+\epsilon_L-\epsilon_R)}\right\}$$

i.e. 0 in SM

Get $g_i = \langle p | dO_i \bar{u} | n \rangle \sim 1$ from LQCD

 $\mathsf{Fermi} \to \mathsf{scalar}, \, \mathsf{Gamow}\text{-}\mathsf{Teller} \to \mathsf{tensor}$
Fierz interference: Spectrum shape

Measure Fierz directly through the β spectrum shape

$$P(E_e) = \text{Standard Model} \times \left(1 + \frac{b_F}{E_e}\right)$$

Fierz interference: Spectrum shape

Measure Fierz directly through the β spectrum shape

$$P(E_e) = \text{Standard Model} \times \left(1 + \frac{b_F}{E_e}\frac{m_e}{E_e}\right)$$

Extremely demanding for

- Detector linearity, energy losses, pile-up,...
- Theory spectrum calculation (\leftrightarrow relative correlation measurements)

Fierz interference: Spectrum shape

Measure Fierz directly through the β spectrum shape

$$P(E_e) = \text{Standard Model} \times \left(1 + \frac{b_F}{E_e}\frac{m_e}{E_e}\right)$$

Extremely demanding for

- Detector linearity, energy losses, pile-up,...
- Theory spectrum calculation (↔ relative correlation measurements)

Feasible because simulation quality & new techniques like CRES Naviliat-Cuncic, Gonzalez-Alonso PRC 94, 035503; LH *et al.*, RMP 90 015008

Ratio measurement has strong benefits

$$\frac{\lambda_{EC}}{\lambda_{\beta^+}} = \sum_{x=K,L,\dots} \frac{f_x}{f_{\beta^+}} \left[\frac{1+b_F/W_x}{1-b_F/W} \right] (1+0.001 \times \delta_{\text{theory}})$$

Enhanced sensitivity to b_F compared to usual $b_F \langle m_e/E_e \rangle$!

$$EC/\beta^+$$

Ratio measurement has strong benefits

$$\frac{\lambda_{EC}}{\lambda_{\beta^+}} = \sum_{x=K,L,\dots} \frac{f_x}{f_{\beta^+}} \left[\frac{1 + b_F / W_x}{1 - b_F / W} \right] (1 + 0.001 \times \delta_{\text{theory}})$$

Enhanced sensitivity to b_F compared to usual $b_F \langle m_e/E_e \rangle$!

- At least $3 \times$ more sensitive than neutron
- Only sensitive to nuclear structure at $\mathcal{O}(\leq 10^{-3})$
- Radiative corrections $\mathcal{O}(10^{-3})$, semi-known (f_{EC})

Ratio measurement has strong benefits

$$\frac{\lambda_{EC}}{\lambda_{\beta^{+}}} = \sum_{x=K,L,\dots} \frac{f_{x}}{f_{\beta^{+}}} \left[\frac{1+b_{F}/W_{x}}{1-b_{F}/\overline{W}} \right] (1+0.001 \times \delta_{\text{theory}})$$

Enhanced sensitivity to b_F compared to usual $b_F \langle m_e/E_e \rangle$!

- At least $3 \times$ more sensitive than neutron
- Only sensitive to nuclear structure at $\mathcal{O}(\leq 10^{-3})$
- Radiative corrections $\mathcal{O}(10^{-3})$, semi-known (f_{EC})

Experimentally interesting

- 'Simpler' counting experiment, could be done with 1 detector
- Systematics drop out in ratio

Choose decays to excited nuclear states $\to \gamma$ coincidence for BG reduction (^22Na, $^{43}{\rm Sc},\,^{58}{\rm Co},\,\ldots)$

Choose decays to excited nuclear states $\to \gamma$ coincidence for BG reduction (^22Na, $^{43}{\rm Sc},\,^{58}{\rm Co},\,\ldots)$

Interesting test for atomic physics calculations, great progress with m_{ν} searches in ¹⁶³Ho (+ use K, L, M capture for consistency)

Choose decays to excited nuclear states $\to \gamma$ coincidence for BG reduction (^22Na, $^{43}{\rm Sc},\,^{58}{\rm Co},\,\ldots)$

Interesting test for atomic physics calculations, great progress with m_{ν} searches in ¹⁶³Ho (+ use K, L, M capture for consistency)

Counting works, energy dependence is even better \rightarrow distinguish different shell captures & fit b_F/W . Looking into detector technology

Atomic physics with β decay

- β^- decay has atomic exchange effect: e^- decays into bound state
- \rightarrow strong enhancement near low energy

Atomic physics with β decay

 β^- decay has atomic exchange effect: e^- decays into bound state \rightarrow strong enhancement near low energy

X1T excess, ²¹⁴Pb background

Aprile et al., 2006.09721; LH, Simonucci, Taioli, 2009.08303

DM & ALP backgrounds dominated by β decays \rightarrow unexplored atomic effects \rightarrow measure in CRES + atom traps?

Introduction

CKM unitarity

Radiative corrections

Neutron and nuclear tests

Exotic current searches

Outlook & summary

Summary & Outlook

Past year(s) has seen several significant changes

- New RC are changing the game for $\left|V_{ud}\right|$
- KI2/KI3 discrepancy for $|V_{us}|$ opened
- Ab initio entering isospin breaking calculations
- New neutron results confirm (τ_n) and create new (λ) tensions

Summary & Outlook

Past year(s) has seen several significant changes

- New RC are changing the game for $\left|V_{ud}\right|$
- KI2/KI3 discrepancy for $|V_{us}|$ opened
- Ab initio entering isospin breaking calculations
- New neutron results confirm (τ_n) and create new (λ) tensions

And several more are coming...

- Better lattice g_A probes ϵ_R (with new RC) + γW tests
- Mirrors can obtain equal V_{ud} footing with n, superallowed \rightarrow independently test corrections

Atomic gains: EC/β^+ has very high b_F sensitivity & measuring atomic exchange necessary for DM & ALP searches

Thank you!

