Developing New Directions in Fundamental Physics (2020)

New Technologies and Techniques Session Summary

Conveners:

Alvaro Chavarria, Makoto Fujiwara, Oliver Stelzer-Chilton, Gray Rybka

Answering the Call of New Physics

Common Themes is this Session

- Probing very low energy scales
 - Neutrino mass, Axion mass scale, anything below an eV
- Improving already sensitive technologies to the quantum level
 - Better clocks for longer coherence time, Qubits as sensors
- A certain obsession with gravity
 - Is it quantum? Is there a graviton?
- Dark Matter
 - Everybody wants to find it

The low-energy side of dark matter

Original Figure: Masha Baryakhtar

Weijian Chen – Superconducting Quantum Sensors and Tests of Quantum Mechanics

Parametric amplification

Weijian Chen – Superconducting Quantum Sensors and Tests of Quantum Mechanics Dispersive measurement

Weijian Chen – Superconducting Quantum Sensors and Tests of Quantum Mechanics

Accelerate dark matter axion search

11/5/2020 Graham et al., Annu. Rev. Nucl. Part. Sci. 65, 485-514 (2015).

Malnou et al., Phys. Rev. X 9, 021023 (2019). 6

Stashington 🐺

University in St.Louis

axion dark matter search in the ueV range

Interjection: ADMX and Quantum Sensors

ADMX at CENPA

Interjection: ADMX and Quantum Sensors

Daniel Carney – Tabletop experiments in quantum gravity

Example of alternative: "classical gravity"

$$G_{\mu\nu} = \frac{8\pi G_N}{c^4} \langle T_{\mu\nu} \rangle \qquad \qquad i\partial_t |\psi\rangle = (H_{mat} + H_{grav}) |\psi\rangle$$

First equation is in principle OK. Closing it with second is bad, but there are consistent versions now known, at least non-relativistically.

As far as I know, all share one property: no gravitational entanglement!

Quantized GR: $|LL\rangle \rightarrow |LL\rangle + |LR\rangle + e^{i\Delta\phi}|RL\rangle + |RR\rangle$ "Classical" GR: $|LL\rangle \rightarrow (|L\rangle + e^{i\Delta\phi}|R\rangle)_1 \otimes (|L\rangle + e^{-i\Delta\phi}|R\rangle)_2$ \rightarrow no entanglement/Bell inequality violation

Daniel Carney – Tabletop experiments in quantum gravity

measuring gravitational entanglement

Implementation with atom interferometer + mechanics

 $\text{Per atom} \rightarrow \ \frac{g}{\omega} = \frac{G_N m M \ell x_{ZPF}}{\hbar \omega_{\text{eff}} L^3} \approx 10^{-11} \times \left(\frac{m}{100 \text{ amu}}\right) \left(\frac{M}{1 \text{ mg}}\right)^{1/2} \left(\frac{1 \text{ mHz}}{\omega_{\text{eff}}}\right)$

- Entangled state of mechanics + atoms, entanglement varies *periodically* in time
- Verification: atom periodically decoheres and recoheres ("wavefunction collapse and revival" similar to NMR/spin echo). **Only need local measurement on atoms!**

Coming soon to arxiv. D. Carney, H. Muller, J. Taylor

Daniel Carney – Tabletop experiments in quantum gravity

Related applications with same technology

 Testing other, crazier ideas about gravity + QM which are NOT predicted by perturbative quantum GR (e.g. Penrose decoherence)

Review: **D. Carney**, P. Stamp, J. Taylor 1807.11494 Snowmass: Theory frontier 1

• Dark matter detection of many flavors (notable: very heavy DM detection purely through gravity)

Review: **D. Carney**, G. Krnjaic, C. Regal, D. Moore et al 2008.06074 Snowmass: Instrumentation frontier 1

Jun Ye – Atomic Clocks and Atomic clock: sensors of space-time Fundamental Physics Quantum Technologies:

- Higher Q **optical** transitions: trapped ions & neutral atoms
- New laser stabilization methods: optical coherence ~ 30 s
- Many atoms in optical lattice: many-body, engineered states

04:29:22.80042298^{13:3}A

Optical frequency comb

τ ~ 160 s Q ~ 10¹⁷

Sr, Yb, Al⁺

0-20

Poli et al., La rivista del Nuovo Cimento, 36 555 (2013); Ludlow et al, RMP 87, 637 (2015).

- Current accuracy ~10⁻¹⁸ = grav. redshift @ 1 cm
- Precision ~3 x 10⁻¹⁹
- (goal) Many-body protected quantum coherence

Jun Ye – Atomic Clocks and Fundamental Physics

- Quantized motion of crystals
- Entanglement under GR
- Wavelike dark matter searches
- Optical Nuclear Transitions

Example: Dilaton dark matter search

Jun Ye – Atomic Clocks and

VUV Comb:

C. Zhang

L. von der Wense

Fundamental Physics

Direct laser excitation of nuclear transition

Beck et al., PRL 98, 142501 (2007). Seiferle et al., Nature 573, 243 (2019).

Jens Gundlach – Dark Matter Searches with Accelerometers

2021 Breakthrough Prize for studies of gravity done at CENPA

Jens Gundlach – Dark Matter Searches with Accelerometers

- Ultra-light new particles mediate ultra-weak forces may be detectable with torsion pendula
- Also sensitive to equivalence principle, some dark matter models (axion wind)

Cris Panda - Atomic Interferometry

Precision interferometry

Cris Panda - Atomic Interferometry Atom interferometer in an optical lattice

Elise Novitski – Laboratory Neutrino Mass Measurements

Pushing direct neutrino mass limits with Project 8

Elise Novitski – Laboratory Neutrino Mass Measurements

- Project 8 is poised to reveal new physics by pushing the limits of knowledge of neutrino mass
- We're developing innovative, yet feasible, new technologies to accomplish this
- There are opportunities for new collaborator to make contributions
- The scale of the final Phase IV experiment is perfect for siting at a national lab
 - tritium licensing and engineering support required
 - − $V_{eff} \approx 5 \text{ m}^3$: small but >tabletop

1 T Solenoid

Makoto Fujiwara – New techniques for precision measurements on simple atoms/molecules

RIUMF

- Hydrogen
 - "Much of what we know about the Universe comes from looking at hydrogen"
 - 75% of known Universe
 - One of the most precisely measured physical systems

- Exotic hydrogen (TRIUMF/CENPA)
 - Muonium
 - Muonic Hydrogen
 - Hadronic Hydrogen
 - Antihydrogen
 - Positronium

Tests of QED, Quantum Field Theory, General Relativity Fundamental Symmetries (CPT, Equiv. Principle etc) "Are we asking the right question?" arXiv:1309.7468

If we can improve the precisions of simple systems, we should!

Makoto Fujiwara – New techniques for precision measurements on simple atoms/molecules

CTRIUMF

Key Concept [paper in preparation]

- <u>Magnetic compression</u> of atomic clouds in a small, high density quadrupole trap (~mm radius)
 - Dynamically transferred from Octupole; now feasible due to laser cooling
 - Magnets are challenging!
- Laser cooling → high phase space density (~100 um radius, 2 mm length)
 - Allow densities $10^7 10^8$ cm⁻³ (currently ~ 1 cm⁻³ in ALPHA)
 - This is a basis for antihydrogen molecular clock development [Myers PRA2018; Zammit et al PRA2019]
- Expansion cooling
 - \rightarrow Can create a (anti)H gas in micro-Kelvin regime!
 - Precision spectroscopy
- Launch into free space as fountain for informetric and other interrogations (~100 nK regime)

Up to $10^7 - 10^8$ colder and/or denser anti-H cloud!

HAICU concept

Outlook – Opportunity Highlights for TRIUMF Summary

- Develop better atomic clocks
- Develop superconducting sensors
- Search for Axion Dark Matter
- Develop Macroscopic/Quantum Mechanical pendula
- Develop Atom Interferometry
- Measure the Neutrino Mass Scale
- Improve Hydrogen/Antihydrogen Measurements

Outlook

"There's plenty of room at the bottom".... Of the energy scale!

Current thinking makes a strong physics case for studying lowenergy, weakly-coupled phenomena.

Recent advances in quantum-scale high-precision techniques makes this possible.

It's an ideal time to think about putting resources in this direction.