Generalised King linearity and new physics searches with isotope shifts Julian Berengut

DND 2020 / TRIUMF / 5 November 2020

Unterstützt von / Supported by

Stiftung/Foundation

Australian Government

Australian Research Council

Outline

- Isotope shift in atomic spectra
- King plot linearity
- Dark bosons and King plot nonlinearity
- Experiments: calcium and ytterbium ions
- Spurions and the generalised King plot
- Future directions

Isotope shift theory

 In the standard theory we express the difference between frequencies of isotope with mass number A and A' by

$$\delta
u_i^{A',A} =
u_i^{A'} -
u_i^A = K_i \left(\frac{1}{A'} - \frac{1}{A} \right) + F_i \, \delta \langle r^2 \rangle^{A',A}$$

"Mass shift" "Field shift"
nuclear recoil charge distribution

- We can factorize the nuclear part and electron parts of each term (consequence of perturbation theory).
- $\delta \langle r^2 \rangle$ change in nuclear charge radius is hard to measure; we can extract it from isotope shift if the electronic factors (F_i , K_i) can be calculated accurately.

King plot

- Remove dependence on nuclear charge radius by cancelling it between two transitions.
- Introduce "modified" isotope shifts:

$$\delta \nu_i^{A',A} = K_i \left(\frac{1}{A'} - \frac{1}{A}\right) + F_i \,\delta \langle r^2 \rangle^{A',A}$$
$$\Rightarrow \quad \delta \overline{\nu_i}^{A',A} = K_i + F_i \,\delta \overline{\langle r^2 \rangle}^{A',A}$$

• Plot $\delta \overline{\nu_1}$ vs $\delta \overline{\nu_2}$ for several pairs of isotopes (A', A): $\delta \overline{\nu_1} = \frac{F_1}{F_2} \delta \overline{\nu_2} + \left(K_1 - \frac{F_1}{F_2} K_2\right)$

King plot: Ca⁺

Gebert, Wan, Wolf, Angstmann, Berengut, Schmidt, PRL 115, 053003 (2015)

King plot nonlinearities

- What if the King plot is not linear?
- May point to new physics in complex atoms that are beyond theoretical description at 7+ digits (e.g. Ca⁺, Sr/Sr⁺, Yb⁺)
- Also many Standard Model "spurions": sources of nonlinearities of unknown size in complex atoms. (We'll come back to these.)

Start with reformulation of King plot

$$\delta \overline{\nu_i}^{42,40} = K_i + F_i \,\delta \overline{\langle r^2 \rangle}^{42,40}$$
$$\delta \overline{\nu_i}^{44,40} = K_i + F_i \,\delta \overline{\langle r^2 \rangle}^{44,40}$$
$$\delta \overline{\nu_i}^{48,40} = K_i + F_i \,\delta \overline{\langle r^2 \rangle}^{48,40}$$

 There are N pairs of isotopes (A', A), so we can make a vector in N-dimensional "isotope pair space"

$$\overrightarrow{\delta\nu_i} = K_i \overrightarrow{\mu} + F_i \overrightarrow{\delta\langle r^2 \rangle}$$

Start with reformulation of King plot

$$\overrightarrow{\delta\nu_i} = K_i \overrightarrow{\mu} + F_i \overrightarrow{\delta\langle r^2 \rangle}$$

• Modified isotope shifts of all transitions $\overrightarrow{\delta\nu_i}$ lie in the same 2D plane in the N-dimensional isotope-pair space.

Berengut, Budker, Delaunay, Flambaum, Frugiuele, Fuchs, Grojean, Harnik, Ozeri, Perez, Soreq, PRL 120, 091801 (2018)

Reduced isotope shift again:

$$\overrightarrow{\delta\nu_i} = K_i \overrightarrow{\mu} + F_i \, \overrightarrow{\delta\langle r^2 \rangle} + \alpha_{\rm NP} X_i \, \overrightarrow{\gamma}$$

• No sensitivity to new physics if $\overrightarrow{\gamma} \sim \overrightarrow{\mu}$ or $X_i \sim F_i$

Berengut, Budker, Delaunay, Flambaum, Frugiuele, Fuchs, Grojean, Harnik, Ozeri, Perez, Soreq, PRL 120, 091801 (2018)

 Example: new force-carrying low-mass boson couples electrons to neutrons with Yukawa potential

$$V_{\phi}(r) = -\frac{y_e y_n}{4\pi} (A - Z) \frac{e^{-m_{\phi} r}}{r}$$

• Isotope shift has an extra term $\delta \nu_i^{A',A} = K_i \left(\frac{1}{A'} - \frac{1}{A}\right) + F_i \,\delta \langle r^2 \rangle^{A',A} + \alpha_{\rm NP} X_i \,\gamma^{A',A}$

For scalar boson case

$$\gamma^{A',A} = A' - A$$
$$X_i \approx \int \frac{e^{-m_{\phi}r}}{r} \left(|\psi_b|^2 - |\psi_a|^2 \right) d^3r$$

Predicted exclusion plot

Berengut, Budker, Delaunay, Flambaum, Frugiuele, Fuchs, Grojean, Harnik, Ozeri, Perez, Soreq, PRL 120, 091801 (2018)

Experiment Ca⁺ exclusion plot

- 4s 3d_{3/2} (732 nm) data at 1 kHz accuracy (Knollman et al. 2019)
- d_{3/2} d_{5/2} fine-structure data at 20 Hz accuracy (Solaro et al. 2020)

Solaro, Meyer, Fisher, Berengut, Fuchs, Drewsen, PRL 125, 123003 (2020)

Experiment Yb⁺ exclusion plot

 6s – 5d_{3/2} and 6s – 5d_{5/2} at 300 Hz accuracy.

10⁷

10⁻²

10⁶

CI -(-1)^s

 $\lambda_{c}(m_{\phi})$ (fm)

10³

MBPT -(-1)^s

 10^{2}

10¹

10⁴

10⁵

Counts, Hur, Aude Craik, Jeon, Leung, Berengut, Geddes, Kawasaki, Jhe, Vuletić, PRL 125, 123002 (2020)

Spurions

Additional Standard Model effects include

- 2nd order Field Shift
- 2nd order Mass Shift
- Nuclear polarizability
- Infinitely many others
- Plus there is the possibility of being limited by uncertainties in nuclear mass measurements.

Spurions General Formalism

Write the isotope shift including general spurions

$$\delta v_i^{A',A} = K_i \,\mu^{A',A} + \sum_{l=1}^{S} F_{il} \,\lambda_l^{A',A}$$

- There are *S* spurions including field shift
- Each term is factorized into electronic and nuclear parts (this expansion can always be made, possibly at the expense of additional terms)
- Different spurions enter at different levels of experimental accuracy

Spurions General Formalism

$$\delta v_i^a = K_i \, \mu^a + \sum_{l=1}^S F_{il} \, \lambda_l^a$$

- $l = 1 \dots S$ spurions
- $i = 1 \dots m$ atomic transitions.
- a = 1..N pairs of isotopes (A', A)

• In the absence of new physics all m isotope shift vectors (dimension N) and μ lie in a hyperplane of dimension S + 1 with basis vectors $\vec{\mu}$ and $\vec{\lambda_l}$.

Berengut, Delaunay, Geddes, Soreq, arXiv:2005.06144; see also Mikami, Tanaka, Yamamoto, EPJC 77, 896 (2017)

Spurions General Formalism

$$\delta v_i^a = K_i \,\mu^a + \sum_{l=1}^{S} F_{il} \,\lambda_l^a + \alpha_{NP} X_i \,\gamma^a$$

- $l = 1 \dots S$ spurions
- $i = 1 \dots m$ atomic transitions.
- a = 1..N pairs of isotopes (A', A)

- In the absence of new physics all m isotope shift vectors (dimension N) and μ lie in a hyperplane of dimension S + 1 with basis vectors $\vec{\mu}$ and $\vec{\lambda_l}$.
- To see new physics requires $N > m \ge S + 1$

Berengut, Delaunay, Geddes, Soreq, arXiv:2005.06144; see also Mikami, Tanaka, Yamamoto, EPJC 77, 896 (2017)

Nuclear mass measurements

- Nuclear masses must be measured better than isotope shifts by a factor of order $\frac{m_A}{(m_{A'}-m_A)}$, otherwise this uncertainty makes the mass shift just another spurion.
- One could use an additional transition rather than the mass difference measurement: the no-mass King (NMK) method
- In this case to see new physics requires $N \ge m \ge S + 2$

Yb⁺ with assumed 10 mHz measurement uncertainty based on E2 and E3 transitions, plus additional Yb S – P, assuming no additional SM nonlinearity

Berengut, Delaunay, Geddes, Soreq, arXiv:2005.06144

Yb⁺ with assumed 10 mHz measurement uncertainty based on E2 and E3 transitions, plus additional Yb S – P to remove second-order field shift effect

Future prospects

	calcium	ytterbium
Stable even isotopes	40, 42, 44, 46, 48	168, 170, 172, 174, 176
N (number of pairs)	4	4
Clock transitions	Ca ⁺ 4s - $3d_{3/2}$ Ca ⁺ 4s - $3d_{5/2}$ Ca 4s ² - 4s4p ³ P ₀ highly charged ions	Yb ⁺ 6s - 5d _{3/2} Yb ⁺ 6s - 5d _{5/2} Yb ⁺ 6s - 6s ² 4f _{7/2} ⁻¹ Yb 6s2 - 6s6p ${}^{3}P_{0}$
m (number of transitions)	3+	4+
Spurions		
2nd order field shift 2nd order mass shift nuclear polarizability	10 ⁻² – 10 ⁻³ Hz 3 Hz 10 ⁻² Hz	10 ³ – 10 ⁴ Hz 28 Hz 38 Hz
S estimated number of spurions at 10 mHz	2+	4+

To see new physics requires N > m > SFlambaum, Geddes, Viatkina, PRA 97, 032510 (2018)

Future prospects

	calcium	ytterbium
Stable even isotopes	40, 42, 44, 46, 48	168, 170, 172, 174, 176
N (number of pairs)	4	4
Clock transitions	C_{2}^{+}/c_{-}^{-}	Vh+ 6s - 5d- (
	Need more isotopes!	
m (number of transitions)	3+	4+
Spurions		
2nd order field shift 2nd order mass shift nuclear polarizability	10 ⁻² — 10 ⁻³ Hz 3 Hz 10 ⁻² Hz	10 ³ – 10 ⁴ Hz 28 Hz 38 Hz
S estimated number of spurions at 10 mHz	2+	4+

To see new physics requires N > m > SFlambaum, Geddes, Viatkina, PRA 97, 032510 (2018)

Summary

- Can probe new physics with precision isotope shift spectroscopy of two different atomic transitions in the same element
- Unknown Standard Model effects (spurions, S) can be controlled using additional transitions
- Need more pairs of even isotopes (N) than transitions (m): N > m > S

Thanks to many collaborators and to you for listening