Experimental Perspectives on Electron Beam Dumps

DND2020 Workshop

Luca Doria (doria@uni-mainz.de)

PRISMA Cluster of Excellence and Institut für Kernphysik Johannes-Gutenberg Universität Mainz

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Precision Physics, Fundamental Interactions and Structure of Matter

Introduction

- (Light) Dark Matter
- (Electron) Beam dump experimental concept
- Running and proposed experiments
- An opportunity for ARIEL ?

LIGHT DARK MATTER

Evidence for Dark Matter

Luca Doria, JGU-Mainz

The Dark Sector

DND2020 Workshop

$$\mathcal{L} \sim \bar{\chi}(i \not{D} - m_{\chi})\chi + \frac{1}{2} \epsilon_{Y} F'_{\mu\nu} B_{\mu\nu} + \frac{1}{2} m_{A'}^{2} A'_{\mu} A'^{\mu}$$

$$D_{\mu} = \partial_{\mu} + i g_{D} A'_{\mu} \quad \text{New U(1) massive gauge boson}$$

$$After EW Symmetry Breaking:$$

$$\epsilon = \epsilon_{Y} \cos \theta_{W} \ll 1 \qquad \frac{1}{2} \epsilon F'_{\mu\nu} F_{\mu\nu}$$

$$4 \text{ parameters:} \qquad m_{A'} \qquad m_{\chi} \qquad \alpha_{D} = \frac{g_{D}^{2}}{4\pi} \quad \epsilon_{Y}$$

Search Strategy vs Mass Hierarchy

Thursday, June 18, 15

$$- Y_{Det} \sim \epsilon^2 \alpha_D / m_A^2$$

Electron Beam Dump Experiments

- Availability of high-current, CW accelerators
- Parasitic operation
- Complementarity wrt proton beam dumps (meson decays)
- Lower neutrino background
- Theoretically simpler signal (similar to QED processes)
- Double test: DM production (in the BD) AND interaction (in the detector)

EXPERIMENTS

Prehistory of electron BD experiments

*Beam: 20GeV electrons on Al target *~200m decay length (mostly earth shielding) *Detector: scintillators + wire chambers

*Other experiments (originally for axion searches):

- SLAC E141: 9 GeV electrons on W E. M. Riordan et al., Phys. Rev. Lett. 59, 755 (1987).
- Fermilab E774: 275 GeV electrons on W A. Bross et al., Phys. Rev. Lett. 67, 2942 (1991).

Data reinterpreted theoretically by: Bjorken et al. Phys.Rev.D80:075018 (2009)

Luca Doria, JGU-Mainz

11

BDX at JLab

Proposed Detector: 820 CsI(TI) BaBar EM Cal Crystals: 32x5x5 cm 8 Modules, 10x10 crystals SiPM readout 3m length, 0.5x0.5m CS

Detector Prototyping in progress. Beam/Cosmics tests at INFN-Catania Background tests at JLAB

New Infrastructure

Beam: E = 11 GeV=100uA 10²² EOT/yr

> Dark matter search in a Beam-Dump eXperiment (BDX) at Jefferson Lab

> > The BDX Collaboration

arXiv:1607.01390

BDX at JLab

90% Upper limits

arXiv:1607.01390

https://www.jlab.org/accel/ops/ops_liaison/BDX/BDX.html

DND2020 Workshop

Luca Doria, JGU-Mainz

MESA accelerator 1.3 GHz c.w. beam Normal conducting injector 2 superconducting cavities Several recirculations

Two main operation modes

1. ERL mode, polarized, 30–105 MeV, 1000 µA: MAGIX *High beam currents, thin gas-jet targets*

2. EB mode, (un-)polarized, 155 MeV, 150 µA: P2 High stability, thick targets, long runs, high luminosities

(2.) MX-EB mode: (un-)polarized, 30–105 MeV, 10 µA: MAGIX Early MAGIX measurements, short runs

DarkMESA

Beam Dump

- 20 X₀ Beam Dump
- Material: Aluminum (+ Water)
- Addition of a W plate?
- Energy on Dump: ~135 MeV
- 10⁴ h of operation; 10²² EOT

Experimental Area - 70 X₀ (~8m) barite concrete - ~ no neutrons at detector position 15 - no beam dump backgrounds Ξ₁₀ - No neutrinos

Detector Concept:

- 81 lead glass blocks
- 30x30x150cm each
- 5" PMTs or SiPM readout
- Other crystals under study

Background Rejection

- Beam on/off
- Comics Veto
- Segmentation

10 ⁹
10 ⁸
107
106
105
104
10 ³
100
10
1

Phase 1

1000 (available!) PbF2 crystals Volume: $1 \times 1 \times 0.13 \text{ m}^3$ 5x5 crystal sub-modules 1200 kg mass

Phase 2

Addition of Pb-Glass blocks Volume: 1m³ 4100 kg mass

Phase 3

Reach maximum volume: O(10m³)

DarkMESA

Simulation

- GEANT4
 - Experimental Halls
 - Beam Dump
 - Detector
 - DM/e DM/p interaction
- MadGraph-4
 - Dark Photon Production
 - Input to GEANT4

DND2020 Workshop

- 100 GeV Electron beam from CERN SPS
- "Active" beam dump
- <u>Missing energy</u> (due to DP production) technique Yield ~ ϵ^2

arXiv:1710.00971

Signal:

- Recoiling electron with E<Ebeamy
- High transverse momentum
- No other activity in the CALs

arXiv:1808.05219

- Location: TBD (SLAC? CERN? JLab? ...) - Missing momentum technique: - Similar to E miss + tracking (angles) - Tracking from HPS@JLab experience - Calorimetry from CMS@LHC experience

Luca Doria, JGU-Mainz

SIMULATION AND TESTS (MESA)

Acceptance

1) Lead Glass Blocks —> Cherenkov Calorimeter —> Directionality + no NR 2) Scintillation Crystals

5" Photomultipliers available (move to SiPMs ?) Materials available:

	X [mm]	Y [mm]	Z [mm]	Density [g/cm³]
SF 5	70	55	160	4.07
SF 6	30	55	160	5.18
SF 57 HTultra	40	55 (180)	160	5.51
BGO	21	21	230	7.13
$PbF_{2}(1)$	Frustum of a pyramid		150	7.77
PbF ₂ (7)	(30x30 / 26x26)		185.4	7.77

Quantum Efficiency **Refraction Index** + **Emission spectra**

M. Christmann et al.: Nucl.Instr.Meth.A 960 (2020), 163665

DND2020 Workshop

Luca Doria, JGU-Mainz

DND2020 Workshop

Prototype:

- 5x5 PbF2 crystal matrix

- Veto system: 2xScintillator planes Lead plane

Scintillator planes coupled with SenseL SiMs through dedicated cards with amplifiers.

Full simulation of the prototype

Simulation by M. Christmann

Additional Pb-Scint Layer

→ only 3x3 crystals as DM detector

0 counts in 1 day after veto ON.

Simulation by M. Christmann

The DRIFT Option

40 Torr CS₂ $+ 1 \text{ Torr O}_2$

χ beam

Readout

et al., Phys. Rev. D 99F(2019) xy, dimensions are 1 m each.

DRIFT: a low pressure negative ion time projection chamber,

operated successfully for many years but not used for LDM searches

29

The ARIEL Case

- Where to locate the experiment?
- Sensitivity?
- Integration into the existing infrastructure?
- Detector technology?

The ARIEL Case

Beam

- E = 30 MeV
- 10000 h/year
- 3x10²³ EOT

Detector

- 3x3x3 m
- 3m OR 20m distance
- 14 MeV threshold

 10^{-6} 4 $\mathcal{C}_{D}(m_{\chi}/m_{\gamma}$ 10^{-7} 10^{-8} 10^{-9} 10^{-10} 10^{-11} 10⁻¹² 10^{-13} 10^{-14} 10^{-15} 10^{-3}

The ARIEL Case

Beam

- E = 50 MeV
- 10000 h/year
- 3x10²³ EOT

Detector

- 3x3x3 m
- 3m OR 20m distance
- 14 MeV threshold

 10^{-6} 4 $e^{2}\alpha_{D}(m_{\chi}/m_{\gamma}$ 10^{-7} 10^{-8} 10^{-9} 10^{-10} 10^{-11} 10⁻¹² 10^{-13} 10^{-14} 10^{-15} 10^{-3}

Luca Doria, JGU-Mainz

Summary of Strengths and Challenges

Beam Properties:

Low beam energy (30 MeV -> 50 MeV?) Have to stay close to BD for good acceptance -> backgrounds? Advantage: no muon/neutrino background

Detector:

Calorimeter / Noble liquid detector / Gas TPC ... ? Low DM masses —> Low threshold -> BKGs again (environment, BD, low-E neutrals) Veto system: cosmics, low energy neutrons and photons Timing? Challenging with CW beam (need sub-ns resolution) -> dedicated bunched beam?

Further studies:

Complex logistics: where to place the detector (separator room, new cave, new beamline, ...)? Enough space in the separator room? Radiation levels low enough?

- High power BD (~100kW expected, more w/o ISOL target..500kW?), bremsstrahlung on Au (+Al)

Summary

- LDM is a quite generic possibility. Many models on the market: experiments needed!
- With a rapidly "heavy" DM window closing, "light" DM searches are gaining a lot of interest.
- Dark sector experiments discussed at major labs equipped with electron machines: SLAC, Cornell, DESY, ELSA, MAMI/MESA, Frascati, KEK, ... Lot of competition.
- BD-type experiments have the potential to explore unique parameter regions at low masses.
- An opportunity for the TRIUMF beams (protons could also be an option...?)
- Realistic full simulation study needed: beam dump + detector technology

Thank you very much!

