BusinessAsUsual BusinessAsPlanned BSM King-ish Needs

®TRIUMF DND2020 || Summary: Radioactive AMO

JB's personalized takes on:

- 'Business as usual' that we avoided
- 'Business as planned soon' that we incompletely covered
- Ettenauer: rad mol vital practicalities
- Berengut: BSM with nonlinear King plot extensions

(Alejandro will summarize decays)

®TRIUMF Rad AMO 'Business as usual'

TRINAT

• β - ν and spin correlations A_{recoil} , A_{β}

Mirror 'heavy neutron' ³⁷K:

Weak charged current Lorentz

structure
• TRV in $\beta\nu\gamma$ decay

- TRV in
- isospin-hindered ⁴⁵K decay:

CSB, P even, T odd, nucleon-nucleon

Francium Atomic PNC

- Main goal:
 - Weak neutral current strength at momentum transfer \sim

8 MeV

With accuracy comparable to

Cs (\sim 2 MeV)

 Optical exp. also extracts nuclear-spin dependent PV: interpretable phenomenologically as anapole moments Others also in J. Dilling plenary:

- TITAN (mass, highly charged ions...)
- Collinear laser spectroscopy 74 Rb $\langle r^2 \rangle$ for V_{ud} , Fr hyperfine anomaly
- Laser-polarized beam: TRV ⁸Li R (Rikkyo U.) to GRIFFIN soon ?

BusinessAsUsual BusinessAsPlanned BSM King-ish Needs

®TRIUMF Rad AMO 'Business as planned'

- Francium fountain Electron EDM
 (J. Dilling plenary)
 TRIUMF LOI from LBL H. Gould
 9.1x larger
 sensitivity, 25x
 smaller syst than Cs
- Rad Molecules
 (R. Berger, N. Hutzler plenaries)
 PNC, EDM's
 TRIUMF LOI from Garcia Ruiz, Dilling
 RaF laser-coolable
- Stephan Ettenauer, CERN (WG talk) Practicalities of making molecules near g.s.

TRV: Nuclear MQM requires unpaired e⁻. Molecules sensitive to octupole deformation-enhanced Schiff moments mentioned:

- ²²⁵RaOH+, ²²⁵RaOCH3+ (e.g. A. Jayich UCSB) Hutzler plenary; Cairncross other WG
- ²²³Fr Ag DeMille (other WG): laser-cool both elements before stimulating combination to desired state, in situ in final EDM experiment region

Preliminary work on Fr₂ with Gwinner Francium PNC group

BSM with nonlinear King plot extensions

Julian Berengut, U. New South Wales arXiv 2005.06144. WG talk has guidelines:

- SM sources of nonlinear King plots ("spurions" ⊕) can be anticipated, parameterized, and estimated.
- An additional transition measurement is needed for each spurion:

Number Isotopes - 1 > # Transitions > # Spurions

- Ca: just enough info from 5 even stable isotopes and 3 narrow transitions possible, but adding HCI transitions as desirable needs more isotopes
- Yb also has 5 even stable isotopes, but is much harder to calculate and has more spurions of greater size. (The Counts PRL text makes it clear that the nonlinearity seen in Yb+ can be accounted for by SM nonlinearity.)
 More isotopes likely needed in the harder systems like Yb

Needed to expand AMO into these areas:

- Rad molecules or ions for EDM's/PNC:
 Every molecule needs detailed spectroscopy (years).
 Kia Boon Ng (WG): JILA is doing ThF+ (g.s. is the physics state!)
 after HfF+: spectroscopy took years longer
- If laser-cooled directly, requires schemes and demos
- Making radioactive molecules from two atoms of laser-cooled elements: full trapping schemes for each, dedicated facility
 These experiments need 'medium-energy scale' collaborations (ACME ThO 'dream team' of 3 faculty at 2-3 universities + N)
- For mHz-accurate optical spectroscopy for nonlinear King plots (or cosmic fields), any element needs multiple narrow lasers (commercial but \$); ion trap techniques creative and exacting (Ozeri, Weizmann Inst), needing mostly people; atom trap techniques more involved but may be necessary