

Ion trapping capabilities at TRIUMF

Ania Kwiatkowski Research Scientist, TRIUMF Adjunct Assistant Professor, U. Victoria

TRIUMF Quantum Computing Retreat 28 November 2019

3 ion-trapping flavors are found at TRIUMF.

Multi-reflection / electrostatic

pair of electrostatic mirrors

Penning traps

magnet + electrostatic field

Paul traps

oscillating (RF) electric field

Differences between atomic origins and		
adaptation for radioactive ion beams (RIB).		
Precision $\delta m/m$ is	<u>AMO</u> <10 ⁻¹²	<u>Nuclear</u> 10 ⁻⁶ -10 ⁻⁹
lons are	stable	T _½ ≥ few ms
lon produced by	surface ion laser	accelerator facility reactor facility fission source
Beam energy	< 5 keV	> 20 keV
Cold	< K	~ eV

Ion traps prepare & measure RIB.

Multi-reflection / electrostatic

pair of electrostatic mirrors

- \rightarrow mass measurements
- \rightarrow beam purification
- \rightarrow decay spectroscopy

magnet + electrostatic field

- \rightarrow mass measurements
- \rightarrow decay spectroscopy
- \rightarrow beam purification
- \rightarrow charge breeding

Paul traps

oscillating (RF) electric field

- \rightarrow beam preparation
- \rightarrow beam purification
- \rightarrow decay spectroscopy

At TRIUMF, three groups use ion traps.

ALPHA particle physics

Penning trap

TITAN

nuclear physics

linear Paul trap Penning trap EBIT electrostatic trap

CANREB accelerator physics

linear Paul trap EBIT

ALPHA: cerncourier.com/a/keeping-antihydrogen-the-alpha-trap;

TITAN is TRIUMF's Ion Trap for Atomic and Nuclear science.

TITAN prepares the beam in the RFQ.

J. Dilling *et al.*, NIMB **204** (2003) 492

The buffer-gas-filled linear Paul trap accumulates, cools, & bunches the RIB.

 RadioFrequency Quadrupole → transverse confinement

• Buffer gas \rightarrow cooling

The buffer-gas-filled linear Paul trap accumulates, cools, & bunches the RIB.

- Space-charge limit of ~10⁵ e with good emittance
- Longitudinal emittance of a few eV µs depending on extraction slope
- Shortest duty cycle demonstrated 5 ms

Broadband, fast mass measurements are performed in the MR-TOF-MS.

Multi-Reflection Time-Of-Flight Mass Spectrometers are based on simple kinematics.

Separation increases with flight path → longer path length OR multiple passes on same path

Precisions up to $\sim 10^{-7}$ and for half-lives as low as 2 ms (²¹⁵Po @Giessen-GSI)

TITAN MR-TOF-MS capabilities:

- Space charge: ≤10⁶ pps
- Sensitivity: <0.1 pps
- Shortest $T_{1/2}$: 5 ms
- $\delta m/m$: > 5×10⁻⁸
- Trap lifetime: 100s ms (singly charged)

MR-TOF was used to measure masses of astrophysically important, n-rich ¹²⁵⁻¹³⁴In.

1000 ¹²⁸In+ detector Counts 100 mirror 10 127.901 127.909 127.917 127.925 Mass [u] mirror In laser ionization no laser ionization Cool, inject & separate by TOF

"Re-trapping" technique makes MR-TOF-MS its own purifier.

C. Izzo et al., in preparation

The highest precision & accuracy are achieved with Penning trap mass spectrometry.

A Penning trap accesses the cyclotron frequency & therefore the ion's mass.

RIB mass measurements with precisions up to $\sim 10^{-9}$ and for half-lives as low as 9 ms (¹¹Li⁺ @ TITAN-TRIUMF)

M. König, et al., Int. J. Mass Spec. 142 (1995) 93; S. Eliseev, et al., PRL 110 (2013) 082501; A.G. Marshall, et al., Int. J. Mass Spec. 215 (2002) 59

Accuracy is understood in theory & practice.

Exact theoretical description

- Brown & Gabrielse, Rev. Mod. Phys. 58 (1986) 233
- G. Bollen, et al., J. Appl. Phys 88 (1990) 4355
- M. Konig, et al. Int. J. Mass Spec. 142 (1995) 95
- M. Kretzschmarr, Int. J. Mass Spec. 246 (2007) 122

Accuracy & precision for non-ideal traps

- G. Bollen, et al., J. Appl. Phys 88 (1990) 4355
- G. Gabrielse, Int. J. Mass. Spec. 279 (2009) 107

Corrections & stabilizations

- K. Blaum et al., EPJ A 15 (2002) 245
- M. Brodeur et al., IJMS 310 (2010) 20
- C. Droese et al., NiMA 632 (2011) 15

\rightarrow Verified via tests of stable nuclides

TITAN MPET capabilities:

- Space charge: $\leq 10^3 e$
- Sensitivity: 100 pps
- Shortest $T_{1/2}$: 8 ms
- δm/m: ≥ 10⁻⁹
- Trap lifetime: >2 s (singly charged)

The Cabibbo-Kobayashi-Maskawa matrix describes quark-mixing interactions.

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{ub} & V_{us}\\ V_{cd} & V_{cb} & V_{cs}\\ V_{td} & V_{tb} & V_{ts} \end{pmatrix} \begin{pmatrix} d\\ b\\ s \end{pmatrix}$$

In the Standard Model, the CKM matrix describes a unitary transformation.

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$

Top row is the most stringent test.

 $|V_{ud}|$ dominates the top row.

It is measured through the mass difference of superallowed β emitters and their daughters.

The Q-value of ²²Mg, a superallowed β emitter, supports quark-mixing matrix's unitarity.

TITAN Q-value measured through TOF-ICR to 220 eV & agrees with literature .

Weighted average $\delta Q = 160 \text{ eV}$, 30% more precise

M.P. Reiter, et al, PRC 96 (2017) 052501

How can higher performance be achieved?

Higher charge states increases precision, reduces exp. requirements, or boosts resolving power.

$$\frac{\delta m}{m} \propto \frac{m}{qe B T_{RF} \sqrt{N}}$$

N = statistics \rightarrow limited by production

 T_{RF} = measurement time \rightarrow limited by $T_{1/2}$

B = magnetic field \rightarrow limited by technology

q = charge state \rightarrow limited by Z

J. Dilling et al., NIMB 204 (2003) 492

The EBIT charge breeds through successive electron impact.

EBIT = Penning trap + electron beam

Charge-state distribution depends on *Z*, electron beam energy, electron current density, & charge breeding time.

EBIT also used for beam purification and storage during decay & recapture.

TITAN EBIT capabilities:

- Space charge: $\leq 10^9 e$
- Sensitivity: 1000 pps
- Shortest $T_{1/2}$: 65 ms
- Max $E_{e beam}$: 65 keV
 - Max current: 5 A
 - Highest charge state: 55Cs³³⁺ at 5 keV

• Trap lifetime: > few min

High charge states resolve isomers & reveals details of nuclear structure.

D. Lascar, et al., PRC, 96 (2017) 044323; C. Babcock, et al. PRC 97 (2018) 024312

The EBIT also boast 7 radial ports, optically accessing trapped ions.

The EBIT's optical access allows nuclear decay spectroscopy.

Magnetic field redirects β particles \rightarrow no positron-annihilation radiation.

Electron beam deepens confinement \rightarrow extends trap lifetime.

Science program:

- originally benchmarking 0v2EC nuclear matrix elements
- changes in nuclear properties as function of charge state for astro
- nuclear excitation by electron capture

EBIT's backing-free environment and reduced β background enhance certain measurements.

A. Lennarz, et al, Phys. Rev. Lett. 113 (2014) 082502; K.G. Leach et al., NIMA, 780 (2015) 91

TRIUMF builds & develops ion traps for short-lived species.

- radioactive ion beams (TITAN, CANREB)
- anti-hydrogen (ALPHA)
- with strong "other" technical support (detectors, controls, DAQ, cryo, HV, ...)

TITAN focuses on nuclear-physics studies.

- mass measurements (Penning trap, MR-TOF)
- in-trap decay spectroscopy (in EBIT or trap assisted)
- beam purification & preparation (MR-TOF, EBIT, Penning trap)

Subatomic-physics vs. quantum computing

- substantial differences (species of interest, energy regime, detection technique, physical dimensions, ...)
- substantial overlap (single-ion sensitivity, ion manipulation, optical access, ...)

Discovery, accelerated