quantum technologies for for fundamental science (@ TRIUMF)

Gerald Gwinner University of Manitoba

What are we talking about?

- Original plan: take part in the retreat, enjoy the free snacks, relax, and learn what q-technology really is.
- After 30 years in the atomic spectroscopy business using lasers and microwaves, I find that this is apparently not necessarily considered "quantum" in the age of the *2nd quantum revolution*.
- Change of plan: JD asks me to talk about q-tech as related to (AMO) activities at TRIUMF. Bummer! So I have to figure this out up front.
 - GG: A talk was not part of the plan!
 - JD: I am altering the deal, pray I don't alter it any further.

What is quantum technology exactly?

- Wikipedia: relies on principles of quantum physics
 - q-computers
 - q-sensing
 - q-cryptography
 - q-simulation
 - q-metrology
 - q-imaging

at first sight, (could) play a role at TRIUMF

- in particular
 - q-entanglement
 - q-superposition
 - q-tunnelling -

If I use a SQUID device in my lab, am I a q-technologist?

- coherence
- phase

great scientists measure frequency geniuses measure phase amplitudes are for losers

GG ca. 1992

• no spontaneous processes

q-experiments at TRIUMF

- surprising number of sophisticated AMO(ish) efforts for a nuclear and particle physics national lab
 - EDM with ultracold neutrons (TUCAN)
 - beta-neutrino correlations in a laser trap (TRINAT)
 - APV with laser trapped francium (FrPNC)
 - EDM with a francium atom fountain (FrEDM)
 - (anti)-hydrogen metrology (ALPHA)

• precision nuclear mass measurements (TITAN) see next talk by Ania

not on the floor yet

Neutron EDM searches

TRIUMF Ramsey method

N. F. Ramsey, Phys.Rev.**76** 996 (1949) \Rightarrow Nobel Prize 1989

- q-entanglement
- q-superposition
- q-tunnelling
- coherence
- phase sensitive det.
- no spont. decay
- 1. prepare a sample of **polarized neutrons**
- 2. make a 90°spin flip("start clock")
- 3. allow free spin precession in (anti-)parallel *B* and *E* static fields
- 4. make another 90°spin flip ("stop clock")
- 5. analyze direction of neutron spin
- 6. Flip E field and repeat

 $\Delta \varepsilon = h |\Delta v| = 4Ed_n$

slide courtesy Rüdiger Picker, TUCAN collaboration

RIUMF TUCAN EDM experiment layout

- Double cell EDM spectrometer at room temperature
- Central HV electrode
- Hg comagnetometer (Xe to follow later)
- Alkali magnetometers surrounding EDM cells
- Self shielded B₀ coils

- Magnetically shielded room
- Thermal enclosure and mag field compensation
- Expect several hundred UCN/cc in cells

Beta-neutrino correlations

- TRINAT, J. Behr et al.
- beta decay in MOT
- many AMO techniques
 - optical pumping for spin polarizing the nucleus (AC MOT)
 - photoionization for trap imaging
 - mostly "old-style quantum" techniques

Melissa Anholm, TRINAT collaboration

WTRIUMF CRINAT: Coherent Population Trapping

CPT as a diagnostic (B-field)

Atomic parity violation in laser trapped francium

Z-boson exchange between atomic electrons and the quarks in the nucleus

*H*_{PNC} mixes electronic *s* & *p* states

 $< n's' | H_{PNC} | np > \propto Z^3$ (Bouchiat, 74)

- signature: drive strictly parity-forbidden $s \rightarrow s E1$ transition
- effect in Fr **18x** larger than in Cs

APV **uniquely** provides the 'orthogonal' constraint on parity violating electronquark couplings (C_{1u}, C_{1d})

Additional, independent test in Fr, Yb etc important (experiment and theory (e.g. rad. corr.) differ significantly

Boulder-style APV measurement measures amplitude

Atomic parity violation in laser trapped francium

- extensive use of optical pumping for state selection
- UHV power buildup cavity
- probing by photon burst from cycling transition
 - **avoid** coherent population trapping (→ anti-q-technology?)
- interference between Stark-induced (f \approx 10⁻¹¹), M1 (f \approx 10⁻¹³), PV-induced E1 (f \approx 10⁻²²) amplitudes

Anti-hydrogen spectroscopy (ALPHA)

elative accuracy

- spectacular successes in the past decade
- in context of q-tech, focus on upcoming plans
 - metrology in (anti) hydrogen
 - cooling, $mK \rightarrow \mu K$
 - H/Hbar fountain

T. W. Hänsch, Rev. Mod. Phys. 78 1297 (2005)

- cryogenic fountain apparatus
- gravity test via atom interferometry
- hyperfine splitting, Ramsey technique → UCN
- (anti) H_2 clock \rightarrow CPT test

eEDM francium atom fountain

• Gould et al., LBNL

Enhancement Factors

Element	<u>R</u>
Fr	900
Cs	115
Rb	25
К	2.4
Na	0.3

Current frontier dominated by molecules. Atoms valuable for their simplicity.

Magnetic Field Noise ≤ 10⁻¹⁵ T

Radial shielding factor of 3 x10⁷

4 nesting 1/2 scale mu metal test shields

=
$$3 \times 10^{-7}$$
 Hz for $R = 900$,
 $E = \pm 10^5$ V/cm, $M = F$,
 $d_e = 10^{-50}$ C·m,

- proposed dilute Rydberg lattice (2009) → nondestructive momentum tracking
- ultimately not pursued (I wonder why :-)

How do we measure the β 's momentum?

- 1) Slow β down to < 900 eV after leaving source
- 2) Cross section for passing β to excite atom from 53s to 53p is: 0.36 x 10⁻⁹ cm²
- When spectrometer detects the β, the 53s atoms are optically de-excited using STIRAP
- 4) 100 V/cm is ramped to ionize the 53p atoms
- MCP detects the ionized Rydberg atoms, giving us a 1D track projection of the β's path

Lattice Specifications:

- Density of Rydberg atoms ~10¹¹ atoms/cm³
- Optical lattice size: 10 cm x 10 cm x 1 cm
- β excites an atom within ~5 microns as it transverses lattice

PHYSICAL REVIEW LETTERS 120, 210501 (2018)

Editors' Suggestion

Featured in Physics

nuclear q-simulation (Oak Ridge)

Cloud Quantum Computing of an Atomic Nucleus

E. F. Dumitrescu,¹ A. J. McCaskey,² G. Hagen,^{3,4} G. R. Jansen,^{5,3} T. D. Morris,^{4,3} T. Papenbrock,^{4,3,*} R. C. Pooser,^{1,4} D. J. Dean,³ and P. Lougovski^{1,†}

¹Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA ²Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA ³Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA ⁴Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA ⁵National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

(Received 12 January 2018; published 23 May 2018)

We report a quantum simulation of the deuteron binding energy on quantum processors accessed via cloud servers. We use a Hamiltonian from pionless effective field theory at leading order. We design a low-depth version of the unitary coupled-cluster ansatz, use the variational quantum eigensolver algorithm, and compute the binding energy to within a few percent. Our work is the first step towards scalable nuclear structure computations on a quantum processor via the cloud, and it sheds light on how to map scientific computing applications onto nascent quantum devices.

DOI: 10.1103/PhysRevLett.120.210501